@misc{bacciu2024generating,
      title={Generating Query Recommendations via LLMs}, 
      author={Andrea Bacciu and Enrico Palumbo and Andreas Damianou and Nicola Tonellotto and Fabrizio Silvestri},
      year={2024},
      eprint={2405.19749},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
@inproceedings{de2024personalized,
  title={Personalized audiobook recommendations at spotify through graph neural networks},
  author={De Nadai, Marco and Fabbri, Francesco and Gigioli, Paul and Wang, Alice and Li, Ang and Silvestri, Fabrizio and Kim, Laura and Lin, Shawn and Radosavljevic, Vladan and Ghael, Sandeep and others},
  booktitle={Companion Proceedings of the ACM on Web Conference 2024},
  pages={403--412},
  year={2024}
}
}
@inproceedings{damianou2024towards,
  title={Towards Graph Foundation Models for Personalization},
  author={Damianou, Andreas and Fabbri, Francesco and Gigioli, Paul and De Nadai, Marco and Wang, Alice and Palumbo, Enrico and Lalmas, Mounia},
  booktitle={Companion Proceedings of the ACM on Web Conference 2024},
  pages={1798--1802},
  year={2024}
}
}
}
@article{ORLbenchmarks,
  title={ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems},
  author={Balaji, Bharathan and Bell-Masterson, Jordan and Bilgin, Enes and Damianou, Andreas and Garcia Moreno, Pablo and Jain, Arpit and Luo, Runfei and Maggiar, Alvaro and Narayanaswamy, Balakrishnan and Ye, Chun},
  journal={arXiv preprint arXiv:1911.10641,
  year={2019}
}
@article{ahn2019variational,
  title={Variational Information Distillation for Knowledge Transfer},
  author={Ahn, Sungsoo and Hu, Shell Xu and Damianou, Andreas and Lawrence, Neil and Dai, Zhenwen},
  journal={arXiv preprint arXiv:1904.05835,
  year={2019}
}
@inproceedings{
flennerhag2018transferring,
title={Transferring Knowledge across Learning Processes},
author={Sebastian Flennerhag and Pablo Garcia Moreno and Neil Lawrence and Andreas Damianou},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=HygBZnRctX},
}
@article{flennerhag2018transferArxiv,
  title={Transferring Knowledge across Learning Processes},
  author={Flennerhag, Sebastian and Moreno, Pablo G and Lawrence, Neil D and Damianou, Andreas},
  journal={arXiv preprint arXiv:1812.01054},
  year={2018}
}
@article{multifidelityDGP,
  title={Deep Gaussian Processes for Multi-fidelity Modeling},
  author={Cutajar, Kurt and Pullin, Mark and Damianou, Andreas and Lawrence, Neil and Gonzalez, Javier},
  journal={NeurIPS workshop on Bayesian deep learning},
  year={2018}
}
@article{variationaldistillation,
Sungsoo Ahn, Shell X. Hu, Andreas Damianou, Neil D. Lawrence, Zhenwen Dai.
  title={Variational Mutual Information Distillation for Transfer Learning},
  author={Ahn, Sungsoo and Hu, Xu Shell and Damianou, Andreas and Lawrence, Neil D and Dai, Zhenwen},
  journal={NeurIPS workshop on Continual Learning},
  year={2018}
}
@article{betabnn,
  title={beta-BNN: A Rate-Distortion Perspective on Bayesian Neural Networks},
  author={Hu, Xu and Moreno, Pablo G and Lawrence, Neil D and Damianou, Andreas},
  journal={NeurIPS workshop on Bayesian deep learning},
  year={2018}
}
@article{CDGP18,
  title={Deep {G}aussian Processes with Convolutional Kernels},
  author={Kumar, Vinayak and Singh, Vaibhav and Srijith, P. K and Damianou, Andreas},
  journal={arXiv preprint arXiv:1806.01655},
  year={2018}
}
@inproceedings{yang2018leveraging,
  title={Leveraging Crowdsourcing Data For Deep Active Learning An Application: Learning Intents in {A}lexa},
  author={Yang, Jie and Drake, Thomas and Damianou, Andreas and Maarek, Yoelle},
  booktitle={Proceedings of the 2018 World Wide Web Conference on World Wide Web},
  pages={23--32},
  year={2018},
  organization={International World Wide Web Conferences Steering Committee}
}
@article{mattos2017deep,
  title={Deep recurrent Gaussian processes for outlier-robust system identification},
  author={Mattos, C{\'e}sar Lincoln C and Dai, Zhenwen and Damianou, Andreas and Barreto, Guilherme A and Lawrence, Neil D},
  journal={Journal of Process Control},
  year={2017},
  publisher={Elsevier}
}
@article{dgpirl,
  title={Inverse Reinforcement Learning via Deep Gaussian Process},
  author={Jin, Ming and Damianou, Andreas and Abbeel, Pieter and Spanos, Costas},
  journal={33rd Conference on Uncertainty in Artificial Intelligence (UAI)},
  year={2017}
}
@article{onlineconstrained,
  title={Online Constrained Model-based Reinforcement Learning},
  author={Van Niekerk, Benjamin and Damianou, Andreas and Rosman, Benjamin},
  journal={33rd Conference on Uncertainty in Artificial Intelligence (UAI)},
  year={2017}
}
@article{gonzalez2017preferential,
  title={Preferential Bayesian Optimization},
  author={Gonzalez, Javier and Dai, Zhenwen and Damianou, Andreas and Lawrence, Neil D},
  booktitle = {Proceedings of the 34th International Conference on Machine Learning (ICML-17)},
  series =    {ICML '17},
  year={2017}
}
@inproceedings{perdikaris2017nonlinear,
  title={Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling},
  author={Perdikaris, P and Raissi, M and Damianou, A and Lawrence, ND and Karniadakis, GE},
  booktitle={Proc. R. Soc. A},
  volume={473},
  number={2198},
  pages={20160751},
  year={2017},
  organization={The Royal Society}
}
@article{damianou2017manifold,
  title={Manifold Alignment Determination: finding correspondences across different data views},
  author={Damianou, Andreas and Lawrence, Neil D and Ek, Carl Henrik},
  journal={arXiv preprint arXiv:1701.03449},
  year={2017}
}
@article{Gonzalez2016Pairwise,
  title={{B}ayesian Optimisation with Pairwise Preferential Returns},
  author={Gonzalez, J and Dai, Z and Damianou, A and Lawrence, N },
  booktitle={{NIPS} workshop on {B}ayesian {O}ptimization},
  year={2016}
}
@inproceedings{martinez2016integrated,
  title={An integrated probabilistic framework for robot perception, learning and memory},
  author={Martinez-Hernandez, U and Damianou, A and Camilleri, D and Boorman, LW and Lawrence, N and Prescott, AJ},
  booktitle={2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)},
  year={2016},
  organization={IEEE}
}
@article{damianou2016IBFA,
  title={Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis},
  author={Damianou, Andreas and Lawrence, Neil D and Ek, Carl Henrik},
  journal={arXiv preprint arXiv:1604.04939},
  year={2016}
}
@article{Mattos:LatentAutoregressive16,
  title={Latent Autoregressive {G}aussian Process Models for Robust System Identification},
  author={Mattos, C{\'e}sar Lincoln C and Damianou, Andreas and Barreto, Guilherme A and Lawrence, Neil},
  journal={11th IFAC Symposium on Dynamics and Control of Process System (DYCOPS)},
  year={2016}
}
@article{Dai:VAEDGP16,
  title={Variational Auto-encoded Deep {G}aussian Processes},
  author={Dai, Zhenwen and Damianou, Andreas and Gonz{\'a}lez, Javier and Lawrence, Neil},
  journal={International Conference on Learning Representations (ICLR)},
  year={2016}
}
@article{mattos:RGP16,
  title={Recurrent {G}aussian Processes},
  author={Mattos, C{\'e}sar Lincoln C and Dai, Zhenwen and Damianou, Andreas and Forth, Jeremy and Barreto, Guilherme A and Lawrence, Neil D},
  journal={International Conference on Learning Representations (ICLR)},
  year={2016}
}
@inproceedings{bekiroglu2016probabilistic,
  title={Probabilistic consolidation of grasp experience},
  author={Bekiroglu, Yasemin and Damianou, Andreas and Detry, Renaud and Stork, Johannes A and Kragic, Danica and Ek, Carl Henrik},
  booktitle={Robotics and Automation (ICRA), 2016 IEEE International Conference on},
  pages={193--200},
  year={2016},
  organization={IEEE}
}
@article{damianou:MAD15,
  title={Manifold Alignment Determination},
  author={Damianou, Andreas and Lawrence, Neil D and Ek, Carl Henrik},
  journal={NIPS workshop on Multi-Modal Machine Learning},
  year={2015}
}
@article{damianou:thesis15,
  title={Deep Gaussian Processes and Variational Propagation of Uncertainty},
  author={Damianou, Andreas},
  journal={PhD Thesis, University of Sheffield},
  year={2015},
  publisher={University of Sheffield}
}
@article{JMLR:v17:damianou16a,
  author  = {Andreas C. Damianou and Michalis K. Titsias and Neil D. Lawrence},
  title   = {Variational Inference for Latent Variables and Uncertain Inputs in {G}aussian Processes},
  journal = {Journal of Machine Learning Research},
  year    = {2016},
  volume  = {17},
  number  = {42},
  pages   = {1-62},
  url     = {http://jmlr.org/papers/v17/damianou16a.html}
}
@article{Martinez:cognitiveIROS15,
  title={Cognitive architecture for robot perception and learning based on human-robot interaction},
  author={Uriel Martinez-Hernandez and Luke Boorman and Andreas Damianou and Tony Prescott},
  journal={IEEE/RSJ IROS workshop on Learning Object Affordances: a fundamental step to allow prediction, planning and tool use?},
  year={2015}
}
@inproceedings{Damianou:topdown15,
  title={A top-down approach for a synthetic autobiographical memory system},
  author={Damianou, Andreas and Ek, Carl Henrik and Boorman, Luke and Lawrence, Neil and Prescott, Tony},
  booktitle={4th International Conference on Biomimetic and Biohybrid Systems (Living Machines)},
  year={2015}
}
@inproceedings{Boorman:hippocampal15,
  title={Extending a hippocampal model for navigation around a maze generated from real-world data},
  author={Boorman, Luke and Damianou, Andreas and Martinez-Hernandez, Uriel and Prescott, Tony},
  booktitle={4th International Conference on Biomimetic and Biohybrid Systems (Living Machines)},
  year={2015}
}
@inproceedings{Damianou:semidescribed15,
  title={Semi-described and semi-supervised learning with {G}aussian processes},
  author={Damianou, Andreas and Lawrence, Neil},
  booktitle={31st Conference on Uncertainty in Artificial Intelligence (UAI)},
  year={2015}
}
@article{Dai:Parallel14,
  title={Gaussian Process Models with Parallelization and {GPU} acceleration},
  author={Dai, Zhenwen and Damianou, Andreas and Hensman, James and Lawrence, Neil},
  journal={arXiv preprint arXiv:1410.4984},
  year={2014}
}
@article{Damianou:variational14,
  title={Variational Inference for Uncertainty on the Inputs of {G}aussian Process Models},
  author={Andreas C. Damianou and Michalis K. and Titsias and Neil D. Lawrence},
  journal={ar{X}iv preprint ar{X}iv:1409.2287},
  year={2014}
}
@inproceedings{vasisht2014active,
  title={Active learning for sparse bayesian multilabel classification},
  author={Vasisht, Deepak and Damianou, Andreas and Varma, Manik and Kapoor, Ashish},
  booktitle={Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining},
  pages={472--481},
  year={2014},
  organization={ACM}
}
@article{hensman:deepGPLargeData,
  title={Opening the way for deep {G}aussian processes on massive data},
  author={Hensman, James and Damianou, Andreas and Lawrence, Neil},
  url={http://staffwww.dcs.shef.ac.uk/people/A.Damianou/papers/deepGPsLargeDataAbstract_AISTATS14.pdf},
  year={2014},
  journal={AISTATS, Late Breaking Poster},
}
 
@InProceedings{Damianou:deepGPs13,
  author =    {Andreas Damianou and Neil Lawrence},
  title =     {Deep {G}aussian Processes},
  booktitle = {Proceedings of the Sixteenth International Workshop on Artificial Intelligence and Statistics (AISTATS)},
  series =    {AISTATS '13},
  year =      {2013},
  editor =    {C. Carvalho and P. Ravikumar},
  location =  {Arizona, USA},
  publisher = {JMLR W\&CP 31},
  pages=      {207--215},
}
 
@InProceedings{Damianou:mrd12,
  author =    {Andreas Damianou and Carl Ek and Michalis Titsias and Neil Lawrence},
  title =     {Manifold Relevance Determination},
  booktitle = {Proceedings of the 29th International Conference on Machine Learning (ICML-12)},
  series =    {ICML '12},
  year =      {2012},
  editor =    {John Langford and Joelle Pineau},
  location =  {Edinburgh, Scotland, GB},
  isbn =      {978-1-4503-1285-1},
  month =     {July},
  publisher = {Omnipress},
  address =   {New York, NY, USA},
  pages=      {145--152},
}
@article{DBLP:journals/corr/abs-1301-3461, 
  author    = {Cheng Zhang and 
               Carl Henrik Ek and 
	       Andreas Damianou and 
               Hedvig Kjellstr{\"o}m},
  title     = {Factorized Topic Models}, 
  journal   = {CoRR}, 
  volume    = {abs/1301.3461}, 
  year      = {2013}, 
  ee        = {http://arxiv.org/abs/1301.3461}, 
  bibsource = {DBLP, http://dblp.uni-trier.de} 
}
  
@incollection{Damianou:vgpds11,
 title ={Variational {G}aussian Process Dynamical Systems},
 author={Andreas C. Damianou and Michalis Titsias and Neil D. Lawrence},
 booktitle = {Advances in Neural Information Processing Systems 24},
 editor = {J. Shawe-Taylor and R.S. Zemel and P. Bartlett and F.C.N. Pereira and K.Q. Weinberger},
 pages = {2510--2518},
 year = {2011}
}
@article{damianou2009visual,
  title={Visual Object Categorization using Topic Models},
  author={Damianou, Andreas},
  journal={Master of Science Thesis, School of Informatics, University of Edinburgh},
  year={2009},
  publisher={School of Informatics, University of Edinburgh}
}