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Abstract
In this paper we present a fully Bayesian latent
variable model which exploits conditional non-
linear (in)-dependence structures to learn an ef-
ficient latent representation. The latent space
is factorized to represent shared and private in-
formation from multiple views of the data. In
contrast to previous approaches, we introduce a
relaxation to the discrete segmentation and al-
low for a “softly” shared latent space. Fur-
ther, Bayesian techniques allow us to automat-
ically estimate the dimensionality of the latent
spaces. The model is capable of capturing
structure underlying extremely high dimensional
spaces. This is illustrated by modelling unpro-
cessed images with tenths of thousands of pixels.
This also allows us to directly generate novel im-
ages from the trained model by sampling from
the discovered latent spaces. We also demon-
strate the model by prediction of human pose in
an ambiguous setting. Our Bayesian framework
allows us to perform disambiguation in a prin-
cipled manner by including latent space priors
which incorporate the dynamic nature of the data.

1. Introduction
Multiview learning is characterised by data which contain
observations from several different modalities: for exam-
ple depth cameras provide colour and depth images from
the same scene, or a meeting might be represented by both
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an audio and a video feed. This motivates latent variable
models which align the different views by assuming that a
portion of the data variance is shared between the modal-
ities, whilst explaining the remaining variance with latent
spaces that are private to each modality. This model struc-
ture allows inference when only a subset of the modali-
ties is available and, because the observation spaces have
been aligned, it is possible to transfer information between
modalities by conditioning the model through the underly-
ing concept.

Several approaches that combine multiple views have been
suggested. One line of work aims to find a low-dimensional
representation of the observations by seeking a transfor-
mation of each view. Different approaches exploit differ-
ent characteristics of the data such as, correlation (Kuss &
Graepel, 2003; Ham et al., 2005), or mutual information
(Memisevic et al., 2011). However, these methods only
aim to encode the shared variance and do not provide a
probabilistic model. To address these shortcomings dif-
ferent generative models have been suggested. In partic-
ular, approaches formulated as Gaussian Processes Latent
Variable Models (GP-LVMs) (Lawrence, 2005) have been
especially successful (Shon et al., 2006; Ek et al., 2007).
However, these models assume that a single latent variable
is capable of representing each modality, implying that the
modalities can be fully aligned. To overcome this, the idea
of a factorized latent space was presented in (Ek et al.,
2008) where each view is associated with an additional
private space, representing the variance which cannot be
aligned, in addition to the shared space (Ek, 2009), an idea
independently suggested by Klami & Kaski (2006). The
main challenge for the applicability of the proposed mod-
els is that the factorization of the latent variable is a struc-
tural and essentially discrete property of the model, making
it very challenging to learn. Salzmann et al. (2010) intro-
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duced a set of regularizers allowing the dimensionality of
the factorization to be learned. However, the regularizers
were motivated out of necessity rather than principle and
introduced several additional parameters to the model.

We present a new principled approach to learning a factor-
ized latent variable representation of multiple observation
spaces. We introduce a relaxation of the structural factor-
ization of the model from the original hard discrete rep-
resentation, where each latent variable is either associated
with a private space or a shared space, to a smooth contin-
uous representation, where a latent variable may be more
important to the shared space than the private space. In con-
trast to previous approaches the model is fully Bayesian, al-
lowing estimation of both the dimensionality and the struc-
ture of the latent representation to be done automatically.
Further, it provides an approximation to the full posterior
of the latent points given the data.We describe the model
and the variational approximation in the next section. The
model is capable of handling extremely high dimensional
data. We illustrate this by modelling image data directly
in the pixel space in section 3. We also demonstrate the
model’s ability to reconstruct pose from silhouette in a hu-
man motion example and, finally, by considering class la-
bels to be a second ‘view’ of a dataset we show how the
model can be used to improve classification performance
in a well known visualization benchmark: the “oil data”.

2. The Model
We wish to relate two views Y ∈ RN×DY and Z ∈
RN×DZ of a dataset within the same model. We assume
the existence of a single latent variable X ∈ RN×Q which,
through the mappings {fYd }

DY

d=1 : X 7→ Y and {fZd }
DZ

d=1 :
X 7→ Z (Q < D), gives a low dimensional representation
of the data. Our assumption is that the data is generated
from a low dimensional manifold and corrupted by addi-
tive Gaussian noise ε{Y,Z} ∼ N (0, σ

{Y,Z}
ε I),

ynd = fYd (xn) + εYnd

znd = fZd (xn) + εZnd, (1)

where {y, z}nd represents dimension d of point n. This
leads to the likelihood under the model, P (Y,Z|X,θ),
where θ = {θY ,θZ} collectively denotes the parameters
of the mapping functions and the noise variances σ{Y,Z}ε .
Finding the latent representation X and the mappings fY

and fZ is an ill-constrained problem. Lawrence (2005)
suggested regularizing the problem by placing Gaussian
process (GP) (Rasmussen & Williams, 2006) priors over
the mappings and the resulting models are known as Gaus-
sian Process latent variable models (GP-LVMs).

In the GP-LVM framework each generative mapping is
modeled as a product of independent GP’s parametrized by

a (typically shared) covariance function k{Y,Z} evaluated
over the latent variable X , so that

p(FY |X,θY ) =

DY∏
d=1

N (fYd |0,KY ), (2)

where FY = {fYd }
DY

d=1 with fYnd = fYd (xn), and similarly
for FZ . This allows for general non-linear mappings to be
marginalised out analytically leading to a likelihood as a
product of Gaussian densities,

P (Y,Z|X,θ) =
∏
K={Y,Z}

∫
p(K|FK)p(FK|X,θK)dFK. (3)

A fully Bayesian treatment requires integration over the la-
tent variable X in equation (3) which is intractable, as X
appears non-linearly in the inverse of the covariance matri-
ces KY and KZ of the GP priors for fY and fZ . In prac-
tice, a maximum a posteriori solution (Shon et al., 2006; Ek
et al., 2007; Salzmann et al., 2010) was often used. How-
ever, failure to marginalize out the latent variables means
that it is not possible to automatically estimate the dimen-
sionality of the latent space or the parameters of any prior
distributions used in the latent space. We show how we can
obtain an approximate Bayesian training and inference pro-
cedure by variationally marginalizing out X . We achieve
this by building on recent variational approximations for
standard GP-LVMs (Titsias & Lawrence, 2010; Damianou
et al., 2011). We then introduce automatic relevance de-
termination (ARD) priors (Rasmussen & Williams, 2006)
so that each view of the data is allowed to estimate a sep-
arate vector of ARD parameters. This allows the views to
determine which of the emerging private and shared latent
spaces are relevant to them. We refer to this idea as mani-
fold relevance determination (MRD).

2.1. Manifold Relevance Determination

We wish to recover a factorized latent representation such
that the variance shared between different observation
spaces can be aligned and separated from variance that is
specific (private) to the separate views. In manifold rel-
evance determination the notion of a hard separation be-
tween private and shared spaces is relaxed to a continuous
setting. The model is allowed to (and indeed often does)
completely allocate a latent dimension to private or shared
spaces, but may also choose to endow a shared latent di-
mension with more or less relevance for a particular data-
view. Importantly, this factorization is learned from data
by maximizing a variational lower bound on the model ev-
idence, rather than through construction of bespoke reg-
ularizers to achieve the same effect. The model we pro-
pose can be seen as a generalisation of the traditional ap-
proach to manifold learning; we still assume the existence
of a low-dimensional representation encoding the underly-
ing phenomenon, but the variance contained in an observa-
tion space does not necessarily need to be governed by the
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Figure 1. Evolution of the structure of GP-LVM model variants. Far left: Lawrence (2005)’s original model is shown, a single latent
variable X is used to represent the observed data Y . Evolved shared models then (left to right) assume firstly, that all of the variance in
the observations was shared (Shon et al., 2006). Secondly, Ek et al. (2008) introduced private latent spaces to explain variance specific
to one of the views. MAP estimates used in this model meant the structure of the latent space could not be automatically determined.
The rightmost image shows the model we propose in this paper. In this figure we have separated the ARD weights w{Y,Z} from the
full set of model hyperparameters θ{Y,Z} = {σ{Y,Z}

ε , σ
{Y,Z}
ard ,w{Y,Z}}, just to emphasize the usage of ARD covariance functions. The

latent space X is marginalised out and we learn a distribution of latent points for which additional hyperparamters encode the relevance
of each dimension independently for the observation spaces and, thus, automatically define a factorisation of the data. The distribution
p(X) = p(X|θX) placed on the latent space also enables the incorporation of prior knowledge about its structure.

full manifold, as traditionally assumed, nor by a subspace
geometrically orthogonal to that, as assumed in Salzmann
et al. (2010).

The expressive power of our model comes from the ability
to consider non-linear mappings within a Bayesian frame-
work. Specifically, ourDY latent functions fYd are selected
to be independent draws of a zero-mean GP with an ARD
covariance function of the form:

kY (xi,xj) = (σYard)
2e−

1
2

∑Q
q=1 w

Y
q (xi,q−xj,q)2 , (4)

and similarly for fZ . Accordingly, we can learn a common
latent space1 but we allow the two sets of ARD weights
wY = {wYq }

Q
q=1 and wZ = {wZq }

Q
q=1 to automatically in-

fer the responsibility of each latent dimension for generat-
ing points in the Y and Z spaces respectively. We can then
automatically recover a segmentation of the latent space
X =

(
XY , Xs, XZ

)
, where Xs ∈ RN×Qs is the shared

subspace, defined by the set of dimensions q ∈ [1, ..., Q]
for which wYq , w

Z
q > δ, with δ being a number close to

zero and Qs ≤ Q. This equips the model with further flex-
ibility, because it allows for a “softly” shared latent space,
if the two sets of weights are both greater than δ but dis-
similar, in general. As for the two private spaces, XY and
XZ , they are also being inferred automatically along with
their dimensionalities QY and QZ 2. More precisely:

XY = {xq}QY

q=1 : xq ∈ X, wYq > δ, wZq < δ (5)

and analogously for XZ . Here, xq denotes columns of X ,
while we assume that data are stored by rows. All of the
above are summarised in the graphical model of figure 1.

2.2. Bayesian training

The fully Bayesian training procedure requires maximi-
sation of the logarithm of the joint marginal likelihood

1As we will see in the next section, we actually learn a com-
mon distribution of latent points.

2In general, there will also be dimensions of the initial latent
space which are considered unnecessary by both sets of weights.

p(Y,Z|θ) =
∫
p(Y,Z|X,θ)p(X)dX , where a prior distri-

bution is placed onX . This prior may be a standard normal
distribution or may generally depend on a set of parameters
θX . By looking again at (3) we see that the above integral
is intractable due to the nonlinear way in which X appears
in p(F {Y,Z}|X,θ{Y,Z}). Standard variational approxima-
tions are also intractable in this situation. Here, we describe
a non-standard method which leads to an analytic solution.

As a starting point, we consider the mean field method-
ology and seek to maximise a variational lower bound
Fv(q,θ) on the logarithm of the true marginal likelihood
by relying on a variational distribution which factorises as
q(Θ)q(X), where we assume that q(X) ∼ N (µ, S). As
will be explained later more clearly, in our approach q(Θ)
is a distribution which depends on additional variational pa-
rameters Θ = {ΘY ,ΘZ} so that q(Θ) = q(ΘY )q(ΘZ).
These additional parameters Θ as well as the exact form
of q(Θ) will be defined later on, as they constitute the most
crucial ingredient of our non-standard variational approach.

By dropping the model hyperparameters θ from our expres-
sions, for simplicity, we can use Jensen’s inequality and
obtain a variational bound Fv(q) ≤ log p(Y,Z):

Fv(q) =

∫
q(Θ)q(X) log

(
p(Y |X)p(Z|X)

q(Θ)

p(X)

q(X)

)
dX

= LY + LZ − KL [q(X) ‖ p(X)] , (6)

where LY =
∫
q(ΘY )q(X) log p(Y |X)

q(ΘY )
dX and similarly

for LZ . However, this does not solve the problem of in-
tractability since the challenging terms still appear in LY
and LZ . To circumvent this problem, we follow Titsias &
Lawrence (2010) and apply the “data augmentation” prin-
ciple, i.e. we expand the joint probability space with M
extra samples UY and UZ of the latent functions fY and
fZ evaluated at a set of pseudo-inputs (known as “inducing
points”) X̄Y and X̄Z respectively. Here, UY ∈ RMY ×DY ,
UZ ∈ RMZ×DZ , X̄Y ∈ RMY ×Q, X̄Z ∈ RMZ×Q and
M = MY +MZ . The expression of the joint probability is
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as before except for the term p(Y |X) which now becomes:

p(Y |X, X̄Y ) =

∫
p(Y |FY )p(FY |UY , X, X̄Y )·

p(UY |X̄Y )dFY dUY (7)

and similarly for p(Z|X). The integrations over U{Y,Z}

are tractable if we assume Gaussian prior distributions for
these variables. As we shall see, the inducing points are
variational rather than model parameters. More details on
the variational learning of inducing variables in GPs can be
found in Titsias (2009).

Analogously to Titsias & Lawrence (2010), we are now
able to define q(Θ) = q(ΘY )q(ΘZ) as

q(Θ) =
∏

K={Y,Z}

q(UK)p(FK|UK, X, X̄K), (8)

where q(U{Y,Z}) are free form distributions. In that way,
the p(FK|UK, X, X̄K) factors cancel out with the “diffi-
cult” terms of LY and LZ , as can be seen by replacing
equations (8) and (7) back to (6), which now becomes our
final objective function and can be trivially extended for
more than two observed datasets. This function is jointly
maximised with respect to the model parameters, involv-
ing the latent space weights wY and wZ , and the vari-
ational parameters {µ, S, X̄}. As in standard variational
inference, this optimisation gives, as a by-product, an ap-
proximation of p(X|Y,Z) by q(X), i.e. we obtain a dis-
tribution over the latent space. This adds extra robustness
to our model, since previous approaches rely on MAP esti-
mates for the latent points. More detailed derivation of the
variational bound can be found in the suppl. material.

Dynamical Modelling: The model formulation described
previously is also covering the case when we wish to addi-
tionally model correlations between datapoints of the same
output space, e.g. when Y and Z are multivariate time-
series. For the dynamical scenario we follow Damianou
et al. (2011); Lawrence & Moore (2007) and choose the
prior on the latent space to depend on the observation times
t ∈ RN , e.g. a GP with a covariance function k = k(t, t′).
With this approach, we are also allowed to learn the struc-
ture of multiple independent sequences which share some
commonality by learning a common latent space for all
timeseries while, at the same time, ignoring correlations
between datapoints belonging to different sequences.

Inference: Given a model which is trained to jointly rep-
resent two output spaces Y and Z with a common but fac-
torised input space X , we wish to generate a new (or infer
a training) set of outputs Z∗ ∈ RN∗×DZ given a set of
(potentially partially) observed test points Y ∗ ∈ RN∗×DY .
This is done in three steps. Firstly, we predict the set of
latent points X∗ ∈ RN∗×Q which is most likely to have

generated Y ∗. For this, we use an approximation to the
posterior p(X∗|Y ∗, Y ), which has the same form as for the
standard Bayesian GP-LVM model (Titsias & Lawrence,
2010) and is given by a variational distribution q(X,X∗).
To find q(X,X∗) we optimise a variational lower bound
on the marginal likelihood p(Y, Y ∗) which has analogous
form with the training objective function (6). Specifically,
we ignore Z and replace Y with (Y, Y ∗) and X with
(X,X∗) in (6). In the second step, we find the training
latent points XNN which are closest to X∗ in the shared
latent space. In the third step, we find outputs Z from the
likelihood p(Z|XNN ). This procedure returns the set of
training points Z which best match the observed test points
Y ∗. If we wish to generate novel outputs, we have to propa-
gate the information recovered when predicting X∗. Since
the shared latent space encodes the same kind of informa-
tion for both datasets, we can achieve the above by simply
replacing the features of XNN corresponding to the shared
latent space, with those of X∗.

Complexity: As in common sparse methods in Gaussian
processes (Titsias, 2009), the typical cubic complexity re-
duces to O(NM2), where N and M is the total number
of training and inducing points respectively. In our exper-
iments we set M = 100. Further, the model scales only
linearly with the data dimensionality. Indeed, the Gaus-
sian densities in equation (6) result in an objective function
which only involves the data matrices Y and Z in expres-
sions of the form Y Y > and ZZ> which are N ×N matri-
ces no matter how many features DY and DZ are used to
describe the original data. Also, these quantities are con-
stant and can be precomputed. Consequently, our approach
can model datasets with very large numbers of features.

3. Experiments
The MRD method is designed to represent multiple views
of a data set as a set of factorized latent spaces. In this sec-
tion we will show experiments which exploit this factorized
structure. Source code for recreating these experiments is
included as supplementary material.

Yale faces: To show the ability of our method to model
very high-dimensional spaces our first experiment is ap-
plied to the Yale dataset (Georghiades et al., 2001; Lee
et al., 2005) which contains images of several human faces
under different poses and 64 illumination conditions. We
consider a single pose for each subject such that the only
variations are the location of the light source and the sub-
ject’s appearance. Since our model is capable of working
with very high-dimensional data, it can be directly applied
to the raw pixel values (in this case 192 × 168 = 32, 256
pixels/image) so that we do not have to rely on image fea-
ture extraction to pre-process the data, and we can directly
sample novel outputs. From the full Yale database, we con-
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structed a dataset Y containing the pictures corresponding
to all 64 different illumination conditions for each one of 3
subjects and similarly for Z, for 3 different subjects. In this
way, we formed two datasets, Y and Z, each consisting of
all 64 × 3 images corresponding to a set of three different
faces, under all possible illumination conditions, therefore,
Y,Z ∈ RN×D, N = 192, D = 32, 256. We then aligned
the order of the images in each dataset, so that each image
yn from the first one was randomly set to correspond to
one of the 3 possible zn’s of the second dataset which are
depicted in the same illumination condition as yn. In that
way, we matched datapoints between the two datasets only
according to the illumination condition and not the identity
of the faces, so that the model is not explicitly forced to
learn the correspondence between face characteristics.

The latent space variational means were initialised by con-
catenating the two datasets and performing PCA. An alter-
native approach would be to perform PCA on each dataset
separately and then concatenate the two low dimensional
representations to initialise X . We found that both initial-
izations achieved similar results. The optimized relevance
weights {wY ,wZ} are visualized as bar graphs in figure 2.

(a) (b)

Figure 2. The relevance weights for the faces data. Despite allow-
ing for soft sharing, the first 3 dimensions are switched on with
approximately the same weight for both views of the data. Most
of the remaining dimensions are used to explain private variance.

The latent space is clearly segmented into a shared part,
consisting of dimensions indexed as 1,2 and 3 3 two pri-
vate and an irrelevant part (dimension 9). The two data
views allocated approximately equal weights to the shared
latent dimensions, which are visualized in figures 3(a) and
3(b). Interaction with these three latent dimensions reveals
that the structure of the shared subspace resembles a hollow
hemisphere. This corresponds to the shape of the space de-
fined by the fixed locations of the light source.

This indicates that the shared space successfully encodes
the information about the position of the light source and
not the face characteristics. This indication is enhanced by
the results found when we performed dimensionality re-
duction with the standard Bayesian GP-LVM for pictures
corresponding to all illumination conditions of a single face

3Dimension 6 also encodes shared information, but of almost
negligible amount (wY6 and wZ6 are almost zero).

(a) (b) (c)

Figure 3. Projection of the shared latent space into dimensions
{1, 2} and {1, 3} (figures (a) and (b)) and projection of the
Y−private dimensions {5, 14} (figure (c)). It is clear how the
latent points in figure (c) form three clusters, each responsible for
modelling one of the three faces in Y .

(i.e. a dataset with one modality). Specifically, the latent
space discovered by the Bayesian GP-LVM and the shared
subspace discovered by MRD have the same dimensional-
ity and similar structure, as can be seen in figure 4.

(a) (b) (c)

Figure 4. Latent space learned by the standard Bayesian GP-
LVM for a single face dataset. The weight set w associated with
the learned latent space is shown in (a). In figures (b) and (c)
we plotted pairs of the 3 dominant latent dimensions against each
other. Dimensions 4, 5 and 6 have a very small but not negligible
weight and represent other minor differences between pictures of
the same face, as the subjects often blink, smile etc.

As for the private manifolds discovered by MRD, these cor-
respond to subspaces for disambiguating between faces of
the same dataset. Indeed, plotting the largest two dimen-
sions of the first latent private subspace against each other
reveals three clusters, corresponding to the three different
faces within the dataset. Similarly to the standard Bayesian
GP-LVM applied to a single face, here the private dimen-
sions with very small weight model slight changes across
faces of the same subject (blinking etc).

We can also confirm visually the subspaces’ properties by
sampling a set of novel inputs Xsamp from each subspace
and then mapping back to the observed data space using
the likelihoods p(Y |Xsamp) or p(Z|Xsamp), thus obtain-
ing novel outputs (images). To better understand what kind
of information is encoded in each of the dimensions of the
shared or private spaces, we sampled new latent points by
varying only one dimension at a time, while keeping the
rest fixed. The first two rows of figure 5 show some of the
outputs obtained after sampling across each of the shared
dimensions 1 and 3 respectively, which clearly encode the
coordinates of the light source, whereas dimension 2 was
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found to model the overall brightness. The sampling pro-
cedure can intuitively be thought as a walk in the space
shown in figure 3(b) from left to right and from the bottom
to the top. Although the set of learned latent inputs is dis-
crete, the corresponding latent subspace is continuous, and
we can interpolate images in new illumination conditions
by sampling from areas where there are no training inputs
(i.e. in between the red crosses shown in figure 3).

Similarly, we can sample from the private subspaces and
obtain novel outputs which interpolate the non-shared char-
acteristics of the involved data. This results in a morphing
effect across different faces, which is shown in the last row
of figure 5. Example videos can be found in the supple-
mentary material.

As a final test, we confirm the efficient segmentation of
the latent space into private and shared parts by automat-
ically recovering all the illumination similarities found in
the training set. More specifically, given a datapoint yn
from the first dataset, we search the whole space of train-
ing inputs X to find the 6 Nearest Neigbours to the latent
representation xn of yn, based only on the shared dimen-
sions. From these latent points, we can then obtain points in
the output space of the second dataset, by using the likeli-
hood p(Z|X). As can be seen in figure 6, the model returns
images with matching illumination condition. Moreover,
the fact that, typically, the first neighbours of each given
point correspond to outputs belonging to different faces,
indicates that the shared latent space is “pure”, and is not
polluted by information that encodes the face appearance.

Figure 6. Given the images of the first column, the model
searches only in the shared latent space to find the pictures of
the opposite dataset which have the same illumination condition.
The images found, are sorted in columns 2 - 7 by relevance.

Human motion data: For our second experiment, we con-
sider a set of 3D human poses and associated silhouettes,
coming from the dataset of Agarwal and Triggs (Agarwal &
Triggs, 2006). We used a subset of 5 sequences, totalling

649 frames, corresponding to walking motions in various
directions and patterns. A separate walking sequence of
158 frames was used as a test set. Each pose is repre-
sented by a 63−dimensional vector of joint locations and
each silhouette is represented by a 100−dimensional vec-
tor of HoG (histogram of oriented gradients) features.

Given the test silhouette features, we used our model to
generate the corresponding poses. This is challenging, as
the data are multi-modal, i.e. a silhouette representation
may be generated from more than one poses (e.g. fig. 7).

Figure 7. Although the two poses in the second column are very
dissimilar, they correspond to resembling silhouettes that have
similar feature vectors. This happens because the 3D information
is lost in the silhouette space, as can also be seen in the third col-
umn, depicting the same poses from the silhouettes’ viewpoint.

As described in the inference section, given y∗, one of the
N∗ test silhouettes, our model optimises a test latent point
x∗ and finds a series of K candidate initial training inputs
{x(k)

NN}Kk=1, sorted according to their similarity to x∗, tak-
ing into account only the shared dimensions. Based on
these initial latent points, it then generates a sorted series
of K novel poses {z(k)}Kk=1. For the dynamical version
of our model, all test points are considered together and
the predicted N∗ outputs are forced to form a smooth se-
quence. Our experiments show that the initial training in-
puts xNN typically correspond to silhouettes similar to the
given one, something which confirms that the segmentation
of the latent space is efficient. However, when ambiguities
arise, as the example shown in figure 7, the non-dynamical
version of our model has no way of selecting the correct
input, since all points of the test sequence are treated inde-
pendently. But when the dynamical version is employed,
the model forces the whole set of training and test inputs to
create smooth paths in the latent space. In other words, the
dynamics disambiguate the model.

Indeed, as can be seen in figure 8, our method is forced
to select a candidate training input xNN for initialisation
which does not necessarily correspond to the training sil-
houette that is most similar to the test one. What is more,
if we assume that the test pose z∗ is known and seek for
its nearest training neighbour in the pose space, we find
that the corresponding silhouette is very similar to the one
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Figure 5. Sampling inputs to produce novel outputs. First row shows interpolation between positions of the light source in the x
coordinate and second row in the y coordinate (elevation). Last row shows interpolation between face characteristics to produce a
morphing effect. Note that these images are presented scaled here, see suppl. material for the original 32, 256-dimensional ones.

found by our model, which is only given information in the
silhouette space.

Given MRD
NN 

(sil. space)
NN 

(pose space)

Figure 8. Given the HoG features for the test silhouette in column
one, we predict the corresponding pose using the dynamical ver-
sion of MRD and Nearest Neighbour (NN) in the silhouette space
obtaining the results in the first row, columns 2 and 3 respectively.
The last row is the same as the first one, but the poses are rotated
to highlight the ambiguities. Notice that the silhouette shown in
the second row for MRD does not correspond exactly to the pose
of the first row, as the model generates only a novel pose given a
test silhouette. Instead, it is the training silhouette found by per-
forming NN in the shared latent space. The NN of the training
pose given the test pose is shown in column 4.

Given the above, we quantify the results and compare our
method with linear and Gaussian process regression and
Nearest Neighbour in the silhouette space. We also com-
pared against the shared GP-LVM (Ek et al., 2008; Ek,
2009) which optimises the latent points using MAP and,
therefore, requires an initial factorisation of the inputs to
be given a priori. Finally, we compared to a dynamical ver-

sion of Nearest Neighbour where we kept multiple nearest
neighbours and selected the coherent ones over a sequence.
The errors shown in table 1 as well as the video provided
as supplementary material show that MRD performs better
than the other methods in this task.

Table 1. The mean of the Euclidean distances of the joint lo-
cations between the predicted and the true poses. The Nearest
Neighbour in the pose space is not a fair comparison, but is re-
ported here as it provides some insight about the lower bound on
the error that can be achieved for this task.

Error
Mean Training Pose 6.16
Linear Regression 5.86
GP Regression 4.27
Nearest Neighbour (sil. space) 4.88
Nearest Neighbour with sequences (sil. space) 4.04
Nearest Neighbour (pose space) 2.08
Shared GP-LVM 5.13
MRD without Dynamics 4.67
MRD with Dynamics 2.94

Classification: As a final experiment, we demonstrate
the flexibility of our model in a supervised dimensional-
ity reduction scenario for a classification task. The train-
ing dataset was created such that a matrix Y contained
the actual observations and a matrix Z the correspond-
ing class labels in 1-of-K encoding. We used the ‘oil’
database (Bishop & James, 1993) which contains 1000
12−dimensional examples split in 3 classes. We selected
10 random subsets of the data with increasing number of
training examples and compared to the nearest neighbor
(NN) method in the data space. As can be seen in figure 9,
MRD successfully determines the shared information be-
tween the data and the label space and outperforms NN.
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Figure 9. Accuracy obtained after testing MRD and NN on the
full test set of the ‘oil’ dataset.

4. Conclusions
We have presented a new factorized latent variable model
for multi view data. The model automatically factorizes
the data using variables representing variance that exists in
each view separately from variance being specific to a par-
ticular view. The model learns a distribution over the latent
points variationally. This allows us to to automatically find
the dimensionality of the latent space as well as to incor-
porate prior knowledge about its structure. As an example,
we showed how dynamical priors can be included on the
latent space. This allowed us to use temporal continuity
to disambiguate the model’s predictions in an ambiguous
human pose estimation problem. The model is capable of
learning from extremely high-dimensional data. We illus-
trated this by learning a model directly on the pixel repre-
sentation of an image. Our model is capable of learning a
compact an intuitive representation of such data which we
exemplified by generating novel images by sampling from
the latent representation in a structured manner. Finally,
we showed how a generative model with discriminative ca-
pabilities can be obtained by treating the observations and
class labels of a dataset as separate modalities.
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5. Supplementary material
5.1. Detailed derivation of the variational lower bound

As explained in the main paper, we assume Gaussian process priors on the mappings, so that:

fY ∼ GP(0, kY )⇒ p(FY |X,θY ) =

DY∏
d=1

N (fYd |0,KY )

fZ ∼ GP(0, kZ)⇒ p(FZ |X,θZ) =

DZ∏
d=1

N (fZd |0,KZ), (9)

where K{Y,Z} = k{Y,Z}(xi,xj) are the covariance matrices evaluated at the latent points.

The first step in defining a Bayesian training procedure, is to place a prior distribution p(X|θx) over the latent space,
where θx denotes any parameters associated with this prior. For the moment we will not assume any particular form for
this distribution and we will omit the conditioning on θx. Then, the joint distribution of the model is written as

p(Y,Z, FY , FZ , X) =p(Y |FY )p(FY |X)p(Z|FZ)p(FZ |X)p(X)

=p(X)

DY∏
d=1

p(yd|fYd )p(fYd |X)

DZ∏
d=1

p(zd|fZd )p(fZd |X), (10)

where we assume independence in the data features given the latent variables. Then, we seek to optimize the model by
computing the marginal likelihood

p(Y,Z) =

∫
p(Y |FY )p(FY |X)p(Z|FZ)p(FZ |X)p(X)dXdFY dFZ . (11)

The key difficulty with this Bayesian approach is propagating the prior density p(X) through the nonlinear mapping.
This mapping gives the expressive power to the model, but simultaneously renders the associated marginal likelihood (11)
intractable.

We now invoke the variational Bayesian methodology to approximate the integral. Following a standard variational in-
ference procedure, we introduce a variational distribution which we assume to factorise as q(ΘY )q(ΘZ)q(X) where
q(X) ∼ N (µ, S) and q(ΘY ),q(ΘZ) will be defined later on, as their form plays a crucial role in the non-standard varia-
tional approximation followed here. We now compute the Jensen’s lower bound Fv on the logarithm of (11),

Fv(q,θ) =

∫
q(ΘY )q(ΘZ)q(X) log

p(Y,Z|X)p(X)

q(ΘY )q(ΘZ)q(X)
dX

=

∫
q(ΘY )q(ΘZ)q(X) log

(
p(Y |FY )p(FY |X)p(Z|FZ)p(FZ |X)

q(ΘY )q(ΘZ)

p(X)

q(X)

)
dXdFY dFZ

=

∫
q(ΘY )�

��q(ΘZ)q(X) log
p(Y |FY )p(FY |X)

q(ΘY )
dFY dX

+

∫
��
�

q(ΘY )q(ΘZ)q(X) log
p(Z|FZ)p(FZ |X)

q(ΘZ)
dFZdX

−
∫
���

���q(ΘY )q(ΘZ)q(X) log
q(X)

p(X)
dX

= LY + LZ − KL[q(X) ‖ p(X)] (12)

where θ denotes the model’s parameters θ = {θY ,θZ}. However, the above form of the lower bound is problematic
because X (in the GP terms p(FY |X) and p(FZ |X)) appears non-linearly inside the kernel matrices KY and KZ of
equation (9), making the integration overX difficult. It is, thus, obvious that standard mean field variational methodologies
do not lead to an analytically tractable algorithm.
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In contrast, the framework employed here allows us to compute a closed-form Jensen’s lower bound by applying variational
inference after expanding the GP prior so as to include auxiliary inducing variables. Originally, inducing variables were
introduced for computational speed ups in GP regression models. In our approach, these extra variables are used as in
the variational sparse GP method of Titsias (Titsias, 2009). More specifically, we expand the joint probability model in
(10) with M extra samples UY and UZ of the latent functions fY and fZ evaluated at a set of pseudo-inputs (known as
“inducing points”) X̄Y and X̄Z respectively. Here, UY ∈ RMY ×DY , UZ ∈ RMZ×DZ , X̄Y ∈ RMY ×Q, X̄Z ∈ RMZ×Q

and M = MY +MZ .

The augmented joint probability density takes the form

p(Y, FY , FZ , UY , UZ , X, X̄Y , X̄Z) = p(X)

DY∏
d=1

p(yd|fYd )p(fYd |uYd , X)p(uYd |X)

DZ∏
d=1

p(zd|fZd )p(fZd |uZd , X)p(uZd |X) (13)

where p(u{Y,Z}d |X) are zero-mean Gaussians with covariance matrices KY
MM and KZ

MM respectively, constructed using
the same functions as for the GP priors (9). By dropping X from our expressions, we write the augmented GP prior
analytically (see (Rasmussen & Williams, 2006)) as

p(fYd |uYd , X) = N
(
fYd |

(
KY
NMK

Y
MM

)−1
uYd ,K

Y
NN −KY

NM

(
KY
MM

)−1
KY
MN

)
, (14)

and similarly for Z. Here, KY
NN = KY (X,X) and KY

NM denotes the cross-covariance between the function values of kY

evaluated at the latent points X and the inducing points X̄Y .

Analogously to (Titsias & Lawrence, 2010), we are now able to obtain a tractable lower bound through the variational
density:

q(ΘY )q(ΘZ)q(X) =
∏

K={Y,Z}

q(UK)p(FK|UK, X, X̄K)q(X), (15)

where q(U{Y,Z}) are free form distributions and q(X) a Gaussian with parameters µ and S. Optimization of the variational
lower bound provides an approximation to the true posterior p(X|Y,Z) by q(X).

After defining a variational distribution, we can continue our derivation by returning to the expression for the lower bound
(12) and replacing the joint distribution with its augmented version (13) and the variational distribution with its factorised
version (15). Since the variational bound breaks to separate terms for each of the observations spaces, here we will drop
the subscripts Y and Z and show how, in general, we can calculate the L terms of equation (12) for a general observation
space Y . We have:

L =

∫
q(Θ)q(X) log

p(Y, F, U |X, X̄)

q(Θ)
dXdFdU

=

∫ D∏
d=1

p(fd|ud, X, X̄)q(ud) log

∏D
d=1 p(yd|fd)((((

(((p(fd|ud, X, X̄)p(ud|X̄)∏D
d=1(((

((((p(fd|ud, X, X̄)q(ud)q(X)
dXdFdU

=

∫ D∏
d=1

p(fd|ud, X, X̄)q(ud)q(X) log

∏D
d=1 p(yd|fd)p(ud|X̄)∏D
d=1 q(ud)q(X))

dXdFdU (16)

Dropping X̄ from our expressions, for simplicity, we finally obtain:

L =

D∑
d=1

(∫
q(ud)q(X) 〈log p(yd|fd)〉p(fd|ud,X) dud dX + log

〈
p(ud)

q(ud)

〉
q(ud)

)
=

D∑
d=1

Ld. (17)

Calculating (17) in the same manner for every available observation space and replacing back in the variational bound (12)
we obtain the final form of the bound which is now analytically tractable. In particular, the KL term is tractable and easy
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for certain priors p(X). As for the L terms, we can calculate the expectation over p(fd|ud, X) and reveal that the optimal
setting for q(ud) is also a Gaussian. More specifically, we have:

Ld =

∫
q(ud) log

e
〈logN(yd|ad,β

−1Id)〉
q(X)p(ud)

q(ud)
dud −A, (18)

where ad is the mean of (14) and A = β
2 Tr(〈KNN 〉q(X)) + β

2 Tr
(
K−1
MM 〈KMNKNM 〉q(X)

)
. The expression in (18) is a

KL-like quantity and, therefore, q(ud) is optimally set to be the quantity appearing in the numerator of the above equation.
So:

q(ud) = e
〈logN(yd|ad,β

−1Id)〉
q(X)p(ud), (19)

exactly as in (Titsias & Lawrence, 2010). This is a Gaussian distribution since we have assumed p(ud) = N (ud|0,KMM ).

After replacing q(ud) with its optimal value, we can reverse Jensen’s inequality to obtain:

Ld ≥ log

∫
e
〈logN(yd|ad,β

−1Id)〉
q(X)p(ud)dud −A. (20)

Notice that the expectation appearing above is a standard Gaussian integral and (20) can be calculated in closed form,
which turns out to be:

Ld(q,θ) ≥ log

[
(β)

N
2 |KMM |

1
2

(2π)
N
2 |βΨ2 + KMM |

1
2

e−
1
2y

T
d Wyd

]
− βψ0

2
+
β

2
Tr
(
K−1MMΨ2

)
(21)

where:
Ψ0 = Tr(〈KNN 〉q(X)) , Ψ1 = 〈KNM 〉q(X) , Ψ2 = 〈KMNKNM 〉q(X) (22)

and W = βIN − β2Ψ1(βΨ2 + KMM )−1ΨT
1 . This expression is straight forward to compute, as long as the covariance

functions kY and kZ are selected so that the Ψ quantities of (22) can be computed analytically. As shown in (Titsias
& Lawrence, 2010), these statistics constitute convolutions of the covariance function with Gaussian densities and are
tractable for many standard covariance functions, such as the ARD squared exponential or the linear one.

5.2. Inferring a new latent point

Given a model which is trained so as to jointly represent two output spaces Y and Z with a common but factorised input
space X , we wish to generate a new (or infer a training) set of outputs Z∗ ∈ RN∗×DZ given a set of (potentially partially)
observed test points Y ∗ ∈ RN∗×DY . This is done in three steps, as explained in the main paper. Here we explain in more
detail the first step, where we need to predict the set of latent points X∗ ∈ RN∗×Q which is most likely to have generated
Y ∗.

To achieve this, we use an approximation to the posterior p(X∗|Y ∗, Y ), which has the same form as for the standard
Bayesian GP-LVM model (Titsias & Lawrence, 2010) and is given by a variational distribution q(X,X∗). To find q(X,X∗)
we optimise a variational lower bound Fv = F∗v (q(X,X∗)) on the marginal likelihood p(Y, Y ∗) which has analogous
form with the training objective function (6). In specific, we ignore Z and replace Y with (Y, Y ∗) and X with (X,X∗) in
(6) so as to get:

F∗v =

∫
p(Y ∗, Y |X∗, X)p(X∗, X)dX∗dX

≤
∫
q(X∗, X)q(Θ) log

p(Y ∗, Y |X∗, X)p(X∗, X)

q(X∗, X)q(Θ)
dXdX∗. (23)

What now remains is to define q(X∗, X). At this step, the inference procedure differs depending on the type of prior used
for the latent space X . Specifically, if we use a prior that does not couple datapoints, such as a standard normal one, then
we are allowed to write that q(X,X∗) =

∏N
n=1 q(xn)

∏N∗

n=1 q(x
∗
n), where q(x∗n) = N (x∗n|µ∗n, S∗n).
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On the other hand, performing inference in the dynamical model is more challenging, since q(X∗, X) is fully coupled
acrossX andX∗. Therefore, if we wish to maintain the correlation of the inputs depending on their times, we should select
this distribution to only factorise across features: q(X∗, X) =

∏Q
q=1N (x∗q |µ∗q , S∗q ), where Sq,n are (N+N∗)×(N+N∗)

matrices.


