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Abstract

This project investigates the applicability of image annotation algorithms based on

Latent Dirichlet Allocation (LDA) to a task different from the one for which they were

originally designed: visual object categorization.

We developed a topic model which is based on an existing approach and evaluated

its performance on four datasets which we created from the PASCAL database using

different feature extraction algorithms. We treat class labels as a set of caption words

for the images and compare the performance of the LDA-based model with that of an

SVM classifier.

The research strategy followed is a combination of a case study and a series of

experiments whose results are analyzed in detail. We demonstrate how this approach

can be used in order to take effective decisions in every step of the overall modeling

process. We also identify a set of critical issues, such as parameter estimation and

dataset properties, which affect the performance of the LDA-based model.

Our results show that the LDA-based model is outperformed by the traditionally

used SVM, but it achieves comparable scores despite the fact that it is designed for a

different purpose. We identify strengths of the topic-model approach, such as efficient

data representation using the topic space, robustness to small training sets and ability

to control smoothing, which could be combined with a more domain specific algorithm

and potentially produce better results.
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Chapter 1

Introduction

1.1 Motivation

Automatic image annotation (or simply, image annotation) and visual object catego-

rization (or simply, object categorization) are two very similar kinds of problems.

Given an unobserved image, the first task is about deciding which words of a learned

vocabulary would best describe it (thus, create a caption for the image), whereas the

second task is about identifying the existence of certain objects (belonging in a pre-

defined set) depicted in it. The words “describe” and “identify” of the above informal

definitions show the different directions at which the two corresponding kinds of al-

gorithms would aim. Automatic image annotation algorithms try to capture a more

general concept of the depicted image. For example, the word “war” could be learned

from a picture with soldiers and a battlefield.

Topic models constitute a very common choice for the basis of an image annotation

algorithm. They are capable of representing the coocurrences of terms (for example

“war”) with images in an intermediate topic space, something which is useful as it

captures general information about these coocurrences and reveals the underlying “as-

pects” of pictures. On the other hand, image classification is a popular method for

solving object categorization problems, as it has to do with implicitly learning how

to discriminate between classes given a set of image representations (usually as real-

valued vectors) with their accompanying class-labels.

The connection of the image annotation and object categorization tasks becomes

even more obvious by considering that the first approaches for image annotation were

closely related to image classification ( [Smeulders et al., 2000] , [Vailaya et al.,

2001a]). And reversely, there are many efforts which modify specific topic-model
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2 Chapter 1. Introduction

based techniques originally developed for pure image annotation tasks, for image clas-

sification ( [Bosch et al., 2006], [Fei-Fei and Perona, 2005], [Wang et al., 2009], [Blei

and Mcauliffe, 2007]).

However, although these approaches may share common grounds, rarely the imple-

mentation designed to solve specifically the one kind of problems (image annotation)

has been tested on the other (object categorization). The efforts made so far towards

this direction modify the models to such an extend that they can no longer be regarded

as image annotation methods, but they are simply based on topic models. We claim

that the two types of problems can be almost identical under certain circumstances (a

intuition which was confirmed by very recent research [Wang et al., 2009]) and we

believe that it would be interesting to attempt solving object categorization tasks by

utilizing algorithms traditionally used for image annotation. That is, to attempt solv-

ing the object categorization problem by applying a slightly modified model which

remains, though, image annotation oriented. Such an effort would result in defining

formally the conditions (which involve dataset properties and objectives pursued) un-

der which the two kinds of tasks can be thought as being similar. It is reasonable to

believe that in cases like this, a topic model which performs better than another one in

an object categorization task would have an advantage when applied to the image an-

notation task. Moreover, as described in section 2.3.2, methods from different research

fields (information retrieval, machine translation, machine learning, natural language

processing, object detection) inspired the development of algorithms for image anno-

tation. So, it is reasonable to think that the opposite can also work: methods that were

created, evolved and tested mainly for the image annotation problem, could also inspire

new approaches for a similar problem, namely the object categorization one.

For all the above reasons, in this project we investigate the applicability of a par-

ticular image annotation method based on a topic model called Latent Dirichlet Allo-

cation (LDA) for object categorization tasks. In order to do that, we treat the caption-

words, that the model normally emits in order to tag images, as class-labels for our

dataset. Its performance is compared with an SVM classifier which does not detect

the position of the object in the image but, instead, learns from the whole picture and

assumes that all classes are independent.
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1.2 Aims

The primary objective is to describe the way in which topic models originally devel-

oped for image annotation can be applied to object categorization problems, to evaluate

their performance and identify their weaknesses for this kind of tasks. In particular,

various tests will -hopefully- reveal the issues that must be taken into consideration

when applying this kind of methods to object categorization tasks (for example opti-

mal tuning of the parameters, dataset properties etc).

The secondary objective is to demonstrate in detail all the stages involved in the

procedure which must be followed in order to apply our algorithm on a challenging,

multi-class dataset: from feature extraction to application of evaluation measures and

analysis of the results. We will try to show the way in which a series of experiments

along with a good research review can help taking effective decisions for each stage

of the procedure and for the specific task of object categorization. For this reason, the

whole procedure is, hopefully, described in such a way that the project can also be seen

as a case study and a reader with knowledge of the domain could replicate the whole

process.

While trying to achieve the aims mentioned, we hope that some insight will be

provided for the following issues: firstly, based on this work, one would be able to

conclude to what extent the one method can be combined with the other (also inves-

tigated in [Wang et al., 2009]) and would draw numerous other relevant conclusions

about the similarity of the tasks; secondly, one can notice that in a sense, in order to

solve our vision task we borrow an image annotation model which, in turn, borrows

a language model (LDA). Therefore, this work, as a whole, will also provide a small

demonstration of how algorithms originally developed for a specific domain can be

extended in order to solve different kinds of problems.

1.3 Project Outline

The structure of the project is the following:

• Chapter 2 presents a detailed overview of the literature that is related to this

work. The task of object categorization (treated as image classification) and the

automatic image annotation one are defined and explained, as well as the concept

of topic modeling and the relevant approaches for automatic image annotation.
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• Chapter 3 describes the image database used in our experiments and focuses

on the process of extracting a good feature set, which is used by our models for

object categorization.

• Chapter 4 refers to the Support Vector Machine model used for comparison with

our LDA-based method. In particular, we analyze how model selection is done

and how the multi-class problem is approached by using this binary classifier.

• Chapter 5 describes our LDA-based model, analyzing its design and implemen-

tation details as well as the approach used for parameter estimation.

• Chapter 6 presents and analyzes the results obtained from various experiments

conducted in order to compare the two models and identify their strengths and

weaknesses to the object categorization task.

• Chapter 7 summarizes the findings and conclusions of this work. Potential

directions for future work are also discussed.

Note on the implementation: The software programmed for the purpose of this

project is split into numerous segments. In that way, users can easily select the ap-

propriate part of code according to the subtask that they wish to accomplish. As the

subtasks that are involved in the whole process described in the next chapters are very

heterogeneous, for each one the most appropriate programming language is chosen.

As a result, the whole package includes code in Java, Perl/Python, Matlab, standalone

executables and shell scripts.



Chapter 2

Background

2.1 Object categorization as image classification

2.1.1 Defining the task

Visual object categorization refers to the task of learning to identify objects (which

belong to predefined groups, such as “person”, “car” etc) depicted in images, as in

figure 2.1.

Figure 2.1: Pictures grouped according to the object type that they depict. In contrast to a
segmentation task, we don’t care about drawing a bounding box around the object. source:
[Everingham et al., 2008]

In contrast to visual object recognition, which concerns the identification of partic-

ular object instances, categorization concerns the identification of object types, taken

from a pre-defined set. For instance, as [Csurka et al., 2004] explains, recognition

would distinguish between images of two cars with different structure, while catego-

5



6 Chapter 2. Background

rization would place them in the same class under the label “car” (although the def-

initions are not absolute, for example object recognition is very often interpreted as

object categorization). Moreover, in contrast to a visual segmentation problem, where

we additionally care about the position of the identified objects (i.e, the task is to draw

a bounding box around the pixels that form the visual object), in object categoriza-

tion we are only interested in the task of answering with “yes” or “no” to the question

“Does a given image contain an object X?”, where X is expressed in words. This is

in contrast with content-based image retrieval, where a query image is used and the

system must return pictures similar to it, according to some citerion.

Image classification is a simple and natural method for successfully solving ob-

ject categorization problems. More sophisticated models might use classification with

boosting or other techniques. We decided to use a simple image classification model

as a baseline for comparison with the performance of our LDA-based model. In the

simple case, it is given a number of individual images that depict objects and place

them into predefined groups (classes), so as each one contains images that depict the

same kind of objects, assuming that each class is independent from the others. Intu-

itively, this assumption is naive, because if the algorithm is able to identify with high

confidence that, for example, a bird is present in a picture then this should bias the

prediction that a tree is also present. However, on the one hand the combinations of

such correlations are vast and difficult to capture, and on the other hand this approach

would require some prior knowledge on the specific dataset where the algorithm is ap-

plied. For this reason, and because we wish to compare our topic model with a simple

baseline rather than a sophisticated technique, our method for image classification will

simply involve the training and tuning of a Support Vector Machine (SVM), which

is, in general, a powerful classification model. However, in the dataset that we will use,

a picture can belong to more than one classes at the same time (for example it might

depict a motorbike as well as a person). This is called multi-label classification and is,

in general, a difficult task. The method what we used in order to deal with this issue is

described in detail in chapter 4.

2.1.2 SVM classifier

Support Vector Machines (SVMs), based on statistical learning theory principles [Vap-

nik, 1999] are widely used for challenging classification tasks because of their attrac-

tive properties that make them so effective. Firstly, they use the kernel-trick (which
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was first introduced by [Aizerman et al., 1964]) which allows traditional algorithms to

be extended in interesting ways, as explained later in this section. Therefore, SVM’s

can be thought as being an extension of the simple linear models such as logistic re-

gression, which can only represent linear boundaries and are, thus, inappropriate for

most of the practical problems. It is interesting that although the non-linear kernel

function is used to transform the original input space into a new one with more dimen-

sions, no computations are involved in that high-dimensional space, and thus, classical

algorithms can be applied without adaptation [Baudat and Anouar, 2001]. With this

non-linear mapping, the decision boundary learned is linear in the new space (feature

space) but not in the original, data space, thus being more discriminant. Secondly,

SVM’s produce sparse solutions and therefore the predictions for unseen input depend

on the evaluation of the kernel function only on a small number of training instances

(called support-vectors), a property which minimizes the execution time. Moreover,

as figure 2.2 shows, the support-vectors are used to find the separation hyperplane that

maximises the margin between the dataset (known as the optimal hyperplane), lead-

ing in a classifier with low generalization error, as proven in [Anguita et al., 2000].

Finally, the model parameters are found by solving a convex optimization problem, so

local solutions are also global optima [Bishop, 2006].

Figure 2.2: A binary separable problem: the maximum margin is defined by the support vectors
(grey squares) and constitutes the largest separation between the two datasets. source: [Cortes
and Vapnik, 1995]

An SVM algorithm requires significant tuning (parameter setting). In this project

we based our parameter settings on some experiments and relevant papers. In order to

understand the way in which the parameter selection is done, some deeper knowledge

of the theory behind SVM’s is necessary, so as to understand the role and significance

of each variable. To explain briefly how SVMs work, let us suppose that we have a
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training set x ∈ Rn×d , i.e there are a total of n training instances with dimensionality d

and that the corresponding targets are given by a vector y ∈ Rn, with yi = ±1, so we

have a binary classification problem. The SVM algorithm tries to find a hyperplane
(the “optimal” one) that separates the two classes and is described by an equation of

the form:

y(x) = wT
φ(x)+w0 (2.1)

The weight vector w and the bias parameter w0 are the unknowns. φ is the trans-

formation function of the input space where x originally lies. In order to find the

unknowns we must solve an optimization problem. However, as explained in [Luen-

berger, 1984], instead of working with the original problem, we can solve its dual. It

can be shown ( [Bishop, 2006]) that the solution of the dual problem can be found by

optimizing the following function:

min
w,w0,ξ

1
2

wTw+C
n

∑
i=1

ξi

sub ject to : yi

(
wT

φ(xi)+w0

)
≥ 1−ξi (2.2)

ξi ≥ 0, i = 1...n

This is a quadratic programming problem. The parameters ξ in this equation are

called slack variables, and are used in order to perform a trade-off between classifica-

tion error against minimizing the original optimization function, when the problem is

a non-separable one. The parameter C is the penalty or cost variable which defines

the scale of this trade-off. The SVM algorithm using the optimization function of (2.2)

is often called C-SVM in order to be distinguished from the v-SVM [Scholkopf et al.,

2000], which contains an additional parameter v which allows to control the number

of support vectors and errors. The solution to the above optimization problem (2.2) is

proven to be:

ŵ = ∑
i

αiyiφ(xi) (2.3)

where the αi’s are defined during training by solving a quadratic programming

problem (different than the one described in (2.2)), which is described in [Karatzoglou

et al., 2006] and [Boser et al., 1992] in detail.

Given an unseen input x, the predictions of the model are made by computing the

quantity:
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sgn( f (x))

where f (x) = ŵφ(x)+w0 (2.4)

The term φ(x)φ(x j) that arises in the summation when substituting ŵ from (2.3),

can be replaced with an equivalent kernel function k(x,x j), applying in that way the

kernel-trick explained in the beginning of this section. Since we can choose any trans-

formation function φ that we want, we can choose any kernel function that we want

as well. In fact, we can even use some of the already known kernel functions even if

we don’t know to which transformation function they correspond. Different kernels

produce a different feature space and give rise to different algorithms. The four basic

kernel functions are the following: (described in [Hsu et al., 2003])

• linear: k(xi,x j) = xT
i x j

• polynomial: k(xi,x j) = (γxT
i x j + r)d,γ > 0

• radial basis function (RBF): k(xi,x j) = exp(−γ∥xi−x j∥2),γ > 0

• sigmoid: k(xi,x j) = tanh(γxT
i x j + r)

Summarizing all the above, when deciding to use an SVM algorithm, there are

numerous issues that must be resolved:

• The choice of the kernel function

• The choice of the gamma parameter for the kernel function (if it is not chosen to

be a linear one)

• The choice of the c (cost) parameter of equation (2.2)

• The choice of the specific algorithm which is used in order to solve the quadratic

problems and apply heuristics for efficiency

• The way which the original multi-class problem is binarized, i.e transformed to

multiple binary problems (because all the equations presented above require that

the target variable yi ∈ ±1).

The choices that were made for the above issues in this project, are discussed and

justified in chapter 4.
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More information about SVMs can be obtained from [Cortes and Vapnik, 1995]

and [Burges, 1998], with the second being a very interesting tutorial.

2.1.3 Multi-class classification

The discussion in section 2.1.2 was made under the assumption that there are just two

classes, +1 and -1. However, in our task, as well as in most practical applications,

we are required to distinguish between more than two classes. This problem is called

multi-class classification and the corresponding dataset multi-class dataset. Moreover,

each instance of the multi-class dataset might belong to more than one class at the

same time (for example, in our dataset it may depict a person and a dog as well). This

problem is called multi-label problem. In order to utilize a binary classifier to solve

this kind of problems, we can follow two types of approaches, discussed below.

The first, “naive” approach suggests modifying the dataset in a way that a binary

classifier can still be applied. [Tsoumakas and Katakis, 2007] describe and compare

the ways in which this can be achieved. We present only the methods that are suitable

for our task:

• Subjectively or randomly select one of the multiple labels of each multi-label

instance and discard the rest. This is proven to be (and obviously is) a choice

that would produce bad or even unacceptable results.

• For each instance x with label set Y , decompose each pair (x,Y ) into ∣Y ∣ new
pairs (x, l) for every l in Y . For example an instance:

class1 class4 < f eatures >

would be transformed into two instances (with the same feature-set):

class1 < f eatures >
class4 < f eatures >

One of the problems of this approach is that it would require the tesing set to be

pre-processed in the same way, something that is not always feasible.

The second approach, is to build a classifier which can produce probability out-
puts for each candidate class, i.e a vector p1, p2, ..., pn, where n is the number of dif-

ferent classes, such that pi is the probability that the particular instance belongs to

classi. Of course, ∑
n
i=1 pi = 1. This approach is far more preferable, not only because
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it results in better classification and has better mathematical grounds, but also because

many applications and evaluation techniques do require this kind of output.

In order to take advantage of the second method described above, we need to pro-

ceed in two steps: In the first step, the problem must be decomposed into binary tasks,

for example with one of the methods described in [Gidudu et al., 2007]. In the second

step, probability estimates from all the binary tasks must be found and represented as

a single probability for each class. [Platt and Platt, 1999] describes and compares the

ways of doing that. The choice of a particular method for the issues just described, is

a matter of implementation and, thus, is described in chapter 4.

2.2 Topic models

Topic models are generative models which can learn in an unsupervised way the un-

derlying mixture of (unobserved) topics that compose a text document or any kind

of observation that can be represented as a bag of words (a model described in the

next paragraph). Although they were first used for linguistic purposes, as text doc-

uments can naturally be represented as a bag-of-words, since the first probabilistic

version [Hofmann, 1999] they have been widely used in various contexts. Currently,

Latent Dirichlet Allocation (LDA) [Blei et al., 2003] is the state of the art and has

served as a basis for numerous other extensions. In the context of automatic image

annotation, extensions of the LDA model can be designed in order to correlate in a

supervised way the correct caption-words with the topics that are found in an unsuper-

vised manner by the basic LDA algorithm, given the visual features extracted from the

image. The most important of these extensions are discussed in section 2.4.

2.2.1 The Bag-of-Words model and the dyadic domain

LDA assumes that the data to which it is applied are dyadic and represented as a bag-

of-words. A bag-of-words (BoW) is a representation where an object is represented

as an unordered collection of terms, with every term being independent from all the

others. For example, a document may be represented as a collection of words, without

providing any information about any syntactical, grammatical or structural properties

that these words might define within the document. As discussed in [Lewis, 1998],

this assumption is basically the one made by the Naive Bayes classifier when applied

to text data. Obviously this is a naive assumption, but is proven to be a good choice
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for the same reasons that Naive Bayes is found to be so effective: [McCallum and

Nigam, 1998] explains this paradox and proves that the independence assumption,

when applied to a large number of attributes for classification purposes, simplifies the

learning, as the parameters for each attribute can be learnt separately. In other words,

complicated models are very likely to “confuse” the learning algorithm. In principle,

the BoW representation has many variations, discussed in [Lewis, 1998]. One of these,

is to represent each document as a vector w1,w2, ...,wV , where V is the size of our fixed

vocabulary. wi can be either 1, if wordi is present in the document, or 0. Alternatively,

wi can be the number of times that wordi is present in the document, or even the

normalized number of times. As will be discussed in the next chapters, image data can

also be represented as a bag of visual words.

According to [Hofmann, 1998], “dyadic data (or two-mode data) refers to a do-

main with two finite sets of objects in which observations are made for dyads, i.e pairs

with one element from either set”. For example, if a document is represented as a bag-

of-words, then the observations would be made in pairs of the form (d,w), meaning

that document d contains word w. In other words, the concern about dyadic data is to

model their co-occurences.

2.2.2 Notation and definitions

LDA can be applied to any kind of data which can be expressed over a dyadic domain,

thus being utilized in many fields, like text-based information retrieval, computer vi-

sion etc. However, since the most intuitive type of dyadic data are documents rep-

resented as bag-of-words in a corpus, we will use notation and definitions from this

domain. It is obvious, though, how the notation and definitions described below could

be adapted to better describe the dyadic data of other domains (for example the term

word could be replaced with visual word if the domain is computer vision). We use

the following definitions and notation:

• A word (or term) is the basic item of the whole structure, taken from a predefined

vocabulary of size V .

• A document d is a collection of M words, represented as a vector w1,w2, ...,wM.

• A topic is a latent variable which represents a distribution over words. Given that

this distribution may define a larger probability for specific words, as well as that

there are sets of words that co-occur more often in documents, in linguistic terms
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a topic would be what we intuitively understand as the aspect of a document.

However, topics are latent variables and for our purposes we don’t care about

their intuitive meaning.

• A dataset or corpus is a collection of D documents.

2.2.3 The generative process

The generative process that LDA follows, attempts to connect the particles of dyadic

data (for example documents and words) only through the latent topics. So, a docu-

ment is represented as a mixture of topics and each topic is represented as a distribution

over words, by following the procedure described below:

Generative Process

Parameters

α,β given hyperparameters

M # of words

K # of topics

D # of documents

Dimension of vectors and matrices

z D×M

w D×M

θ D×K

φ K×M

Algorithm

For each topic k:

φk ∼ Dir (β)

For each document d:

1) θ∼ Dir(α)

2) For each of the M words:

a) Sample topic zm ∼Mult(θ)

b) Sample word wm from p(wm∣zm,β) :

wm ∼Mult (φzm)

Note that the multinomial distribution is chosen because the model basically re-

lies on the computation of discrete counts of co-occurrences of words in documents,

and that the Dirichlet distribution is chosen because it is conjugate to the multinomial

distribution, something which makes the computations for inference and parameter

estimation easier.
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The above process results in the following joint distribution:

p(θ,z,w∣α,β) = p(θ∣α)
M

∏
i=1

p(zi∣θ)p(wi∣zi,β) (2.5)

which is also presented graphically in figure 2.3. The posterior distribution of the

latent variables, which must be computed for inference given a new unseen document,

is derived from equation (2.5), but the calculation is intractable and, thus, approxima-

tion methods must be used [Blei et al., 2003].

Figure 2.3: The plate notation for the LDA generative process. The outer plate is repeated D
times, for each document and the inner M times, for each word. The observed variable w is
shaded. source: [Blei et al., 2003]

If the generative process is reversed and the algorithm is applied to an existing

corpus, its main outputs would be the ones described in table 2.1:

The distribution of documents over topics p(topic∣document)

The distribution of topics over words p(word∣topic)

Table 2.1: The distributions obtained be applying the LDA algorithm for estimation.

2.3 The Image Annotation task

2.3.1 Defining the task

As discussed briefly in 1.1, automatic image annotation (or image tagging) refers to the

task of automatically creating captions for previously unobserved images by assigning

words to them, taken from a pre-defined vocabulary. This is primarily used for the

efficient management of large image databases. Images which contain captions can



2.3. The Image Annotation task 15

be searched using keywords, while non-annotated images can only be searched with

content-based techniques ( [Das et al., 1998], [Vailaya et al., 2001b]) which are less

efficient and easy to use. Automatic image annotation has generated a lot of recent

interest, as the whole process is related to many domains, such as computer vision (for

image representation as features), information retrieval, natural language processing

and more. The following description of different approaches used so far is indicative of

the way in which standard approaches in one field inspire new methods for a different

domain.

2.3.2 Overview of the approaches used for image annotation

Different approaches have been used to solve this difficult task. Two of the first

proposed were not very different than simple image classification ( [Vailaya et al.,

2001a], [Smeulders et al., 2000]). According to these, images are assigned a label

which describes them and for each label a binary classifier is trained. In contrast, [Mori

et al., 1999] proposed a model known as the co-occurence model, because it bases its

predictions on the frequency by which words were co-occuring with image regions.

Topic models also try to capture the co-occurence of words with image regions, but

they introduce latent variables. We chose to utilize this kind of models in our project,

so a more detailed description is necessary and will be given in section 2.4.

[Duygulu et al., 2002] developed the Translation Model, obviously inspired from

Machine Translation, which operates in two steps: Firstly, each image is represented

as set of blobs (image regions with their corresponding visual features) by applying a

segmentation algorithm to it, extracting features from each segment and clustering the

total set of features found. Then, standard machine translation algorithms which use

EM are applied in order to learn a “translation” from the word set to the blob set.

Finally, Relevance Models ( [Jeon et al., 2003a], [Jeon et al., 2003b]), inspired by

Information Retrieval have also been proposed and are considered to be the state of the

art. The concept of this idea is to perform the following two steps: firstly, find the most

similar images to the test image; then, find the most frequent words of these images’

captions and use them to form the test image’s caption.

It is worth mentioning that the model developed by [Jeon et al., 2003b] as well

as some topic models described in section 2.4 can model continuous features directly,

as they occur in image data, in contrast to [Jeon et al., 2003a], translation model(

[Duygulu et al., 2002]) and co-occurence model( [Mori et al., 1999]). In that way it
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can take advantage of continuous features (such as normalized frequencies etc) without

having to discretize them, and thus, loose precision.

2.4 Topic models for image annotation

2.4.1 General design and principles

As mentioned in the previous section, many image annotation algorithms are based

on topic models, which were described in 2.2. The key idea behind this kind of ex-

tensions is that a collection of images can also be treated as a collection of dyadic

data [Hofmann, 1998]. For example, [Csurka et al., 2004] describes how images can

be represented as a bag of visual keypoints and treated as dyadic data.

A learning algorithm for image annotation tasks, would have to be applied to a

database of image-caption pairs, i.e two sets of dyadic data (because a caption can be

treated as a text document, an array of words). So, we extend the notation that was

defined in 2.2.2 as follows:

We use the following definitions and notation:

• A word (or caption-word) is taken from the predefined vocabulary of length VM,

and is part of the caption that describes the document.

• A blob is an image region with its corresponding features.

• A visual-word (also called visterm) may be a single visual feature of the image

or a blob, depending on the algorithm used. In any case, the whole set of visual-

words is used to represent the image. In total VN different visual-words exist in

the vocabulary.

• A term is the most general category of words and visual-words. When the dis-

tinction between a “word” and a “visual word” is not a matter or when we want

to refer to both at the same time, we will simply use the word “term”.

• A caption is composed of a bag of M words (which form the document’s cap-

tion), and is represented as a vector w1,w2, ...,wM, while an image is composed

of a bag of N visual-words, and is represented as a vector v1,v2, ...,vN .

• A dataset or corpus is a collection of D documents. We use a training and a test

dataset.
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• A document d belonging in the training dataset is a collection of pairs (caption, image),

i.e documenti = captioni ∩ imagei. A document belonging in the test dataset

consists only of the image part, as the caption part must be predicted by the al-

gorithm. When the distinction between a document, a caption and an image is

obvious (the context in which we refer to it is obvious), we will use for all the

term document. For example, a document from the test set is basically an image.

Notice that in the above terminology, we use the terms “caption” and “word” al-

though in our task these would correspond to “label-set” and “class” (or “label”) re-

spectively. However, this section describes topic models in general, and will borrow

the terminology which is usually used, i.e the one taken from computational linguistics.

The key idea of the existing models which are based on extensions of LDA is to

define a generative process which generates both, images and captions, providing some

connection between them. This is achieved by performing the LDA learning step twice,

once for the dyadic pair (caption,word) and once for the pair (image,visual word),

where the caption is represented as a bag-of-words and the image is represented as

a bag-of-visual-words. Thus, when the generative process of this extended model is

reversed, the outputs of table 2.1 will now be augmented to the ones described by the

table 2.2.

The distribution of captions over caption-topics u p(topicu∣caption)

The distribution of topics u over words p(word∣topicu)

The distribution of images over image-topics z p(topicz∣image)

The distribution of topics z over vis.words p(vis.word∣topicz)

Table 2.2: The distributions obtained be applying an extended LDA algorithm for annotating

an unseen image.

The most important differences among the existing LDA-based algorithms, have

basically to do with the following:

• The distributions that are used in order to sample z,u,v,w

• The way in which z and u are connected in a supervised way (there must be some

connection for the algorithm to actually learn)

• The order in which images and captions are generated by the overall generative

process. This has to do with the exchangeability assumptions, explained below.
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A sequence of random variables is said to be exchangeable if any order of sam-

ples could be drawn with the same probability. Exchangeable random variables are to

Bayesian statistics what i.i.d variables are to frequentist statistics. A brief and intuitive

explanation is that according to De Finetti’s theorem [Diaconis, 1977], an exchange-

able sequence of random variables, not necessarily i.i.d, can be expressed as a mixture

of underlying i.i.d sequences. Exchangeability is, thus, an implicit assumption that

may be used by statistical models.

[Blei et al., 2003] describes this concept in the context of LDA: it is assumed that

topics are infinitely exchangeable within a document. Given this, defining conditional

distributions of topics over words is like assuming that words are generated by top-

ics. By applying de Finetti’s theorem the joint distribution of words and topics may

be obtained. In the context of LDA models for image annotation, the exchangeability

concerns caption-words and visual-words, as explained in [Barnard et al., 2003]. A

model which assumes that caption-words and visual-words are exchangeable (for ex-

ample [Barnard et al., 2003]) implies that these can be generated in any order. Thus,

in order to predict caption words based on the image’s visual features, a higher level

mixture component should be used in order to impose some dependency and “tie” the

topics learned for images with the topics learned for their corresponding captions. This

can be avoided by assuming partial exchangeability, as in [Blei and Jordan, 2003]. In

this case, images are generated first and then captions are generated from them, by

learning the appropriate conditional distributions.

2.4.2 Existing models based on LDA

Most of the existing LDA-based models proposed for solving image annotation tasks,

follow the general structure and principles described in 2.4.1. [Blei and Jordan, 2003]

describes and compares three mixture models suitable for describing dyadic data, and

thus being applicable to the image annotation problem. Their Gaussian-multinomial
mixture (GM-Mixture) model is not a pure extension of LDA, but it is a latent factor

model which follows similar principles. The method samples a latent topic z just once

per image/caption pair, and then the image and the caption are both generated by sam-

pling visual words (or regions) and caption-words respectively conditioned on this sin-

gle z. On the other hand, the Gaussian-multinomial LDA (GM-LDA) model breaks

this “extreme correspondance” of the topic-image and topic-caption distributions and

improves the modeling of the joint probability of images and captions. It achieves this
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by sampling a random variable θ from a Dirichlet distribution which represents a dis-

tribution over both kinds of latent variables and then generating both, image-regions

and words with θ held fixed. In that way, the latent variables (topics) for each word or

region are allowed to vary. However, the authors of [Blei and Jordan, 2003] argue that

a good modeling of the joint distribution of words and images is not always indicative

of the quality of word-predictions made given an unseen image. This is because such

predictions require a good modeling of the conditional probabilities involved while

developing the models. Indeed, in the GM-LDA model the dependency of the topics

learned for images and the ones learned for captions is too loose. For this reason, the

authors develop a robust, LDA-based model which combines the good correspondance

of GM-Mixture with the flexibility and the good joint distribution modeling ability of

GM-LDA. The resulting model, Correspondence LDA (Corr-LDA), works in two

phases: in the first phase, it generates the image following the generative process of

the traditional LDA algorithm; in the second phase, caption-words are sampled by the

following iterative procedure: one of the regions of the already generated image is

chosen and a caption-word is generated conditioned on the latent factor that was used

to generate the region during phase one.

[Barnard et al., 2003] proposes the Mixture of Multi-Modal LDA (MoM-LDA)
which attempts to provide the same level of correspondance as Corr-LDA but in a

different way. First of all, the authors implicitly assume that blobs and words are

exchangeable, and so they develop a generative procedure where blobs and words can

be generated in any order, as discussed in section 2.4.1. However, this assumption

would imply no dependency between the latent factors (topics) used to generate the

image and the caption. Indeed, these factors are sampled from the same distribution but

without being connected in any other way, like in GM-LDA described in the previous

paragraph. So, they pose a dependency by sampling words and blobs conditioned not

only on this latent factor, but also on a global mixture component c.

It is worth mentioning that, of course, the existing LDA-based models are not lim-

ited to the ones described, but these are the most popular and “pure”, as many other

methods use various modifications inspired from different domains.
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Datasets

3.1 Description and challenges of the dataset

The dataset that is used for all of our experiments is taken from the PASCAL Visual
Object Classes Challenge 2008 competition 1 [Everingham et al., 2008]. It contains

images which depict objects of 19 different visual classes 2 in realistic scenes and each

class corresponds to one object type, such as those depicted in figure 3.1 (for example:

person, sheep, dog, car etc) 3.

The dataset is considered to be very challenging, since objects are depicted in vari-

ous different angles, scales and lighting conditions. Moreover, each image can contain

none, one or more objects from the same or different classes and certain parts of an ob-

ject may not be visible (for example they may be occluded by another object). Objects

have been manually annotated with bounding boxes in each image, but for classifica-

tion purposes the set of class labels accompanying each picture, forming thus a caption,

is the only annotation that is really needed.

The PASCAL competition’s organizers also propose a splitting of the dataset into

training, validation and test set. Of course for the test set no annotations are provided.

Therefore, for our purposes, we used the proposed training set and we split the pro-

posed validation set into validation and test set. This resulted in a training set of 2093

images, a validation set of 350 images and a test set of 759 images. The distributions

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/index.html
2Actually the original dataset contains a set of 20 different labels, but for our purposes we ig-

nored the class-label “train” and added a special class “no object”. The removal of the “train”
label and a single file in which all annotations for all pictures are gathered, was taken from:
http://www.inf.ed.ac.uk/teaching/courses/iaml/

3More example images are available at:
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/examples/index.html

21
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Figure 3.1: A sample of the image set used. The annotations are placed as yellow bounding
boxes, but for classification only the class-label is needed. source: [Everingham et al., 2008]

of images and objects by class do not vary significantly across the training, validation

and test set, as one can see in figure 3.2.

However, as also can be seen in figure 3.2, even in the training set there are a few

images which contain no objects from the predefined classes. One option, motivated

by the intuition that a classifier cannot actually learn anything from them, is simply to

completely remove these instances, but if this was the option of choice the organizers

would not have included these instances in the dataset in the first place. For this reason,

we chose to add a special class “no object” to indicate that images belonging there do

not depict any of the 19 other object types. The addition of a label like this is a very

popular choice for multi-class classification tasks and it is also convenient in terms of

implementation as most of the existing classification software cannot receive as input

instances without labels. We don’t know if instances with no objects are included in the

original PASCAL test set because its annotations are kept as a secret, but the organizers

do not include a “no object” class in their evaluation reports. In any case, since in our

test set there are images without objects we chose to treat the “no object” class as any

other class, even in the evaluation. Thus, we have a total of 20 classes.

For some datasets, object recognition and object categorization (for the distinction

between the terms see section 2.1.1) are problems almost equally difficult to solve. An

example of a dataset of this kind is one where all images of a particular type of object

might look very similar (low intra-class variability). However, [Opelt et al., 2004]

explains than when object categorization is applied to datasets with certain properties,

the actual task is generic object categorization, which is even harder to solve. These

properties include:

• Images with high background clutter. While the human cognitive recognition

system is very effective in extracting relevant information from images that de-

pict objects in a cluttered environment, artificial vision systems find it difficult
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(a) (b)

(c)

Figure 3.2: The class-number proportions of all training (a), validation (b) and test (c) in-
stances.

to avoid being confused by irrelevant information.

• High intra-class variability. This means that the objects occurring in images of

the same class, seem in fact very different visually. This is not only due to the

natural different structure of objects (for example two persons cannot be identi-

cal) but also due to the different conditions in which they are depicted, namely

lighting conditions, scaling, angle etc. As [Opelt et al., 2004] claims, even two

identical objects could be hard to recognize under this kind of conditions.

• Occlusions, i.e when only a part (sometimes even less than 5%) of the object is

visible in a picture. Indeed, in the PASCAL dataset there are pictures annotated

as “person” although the only part of the person depicted is a head with a helmet

which leaves only the eyes to be visible.
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All of the above properties exist in the PASCAL dataset, as images are taken from

natural scenes (they are taken from flickr 4). Finally, another challenge of the dataset

is that of unbalanced data, meaning that there are certain classes which are far more

popular than others, among instances. For our particular separation into training, val-

idation and test set, we have the proportions described in figure 3.2. Note that these

proportions, for example for a class c, have been created by counting all instances

belonging to class c and dividing with the total number of labels existing in the sets,

rather than with the total number of instances (these two numbers are different because

there are instances which belong to more than 1 class).

As one can see, the “Person” label is extremely dominant, occupying about the 1/3

of the whole label-set for training and validation set, and approximately the 1/5 for

the test set. Moreover, there are labels such as “Sheep” and “Sofa” which occupy only

the 1% of the pie-chart. In other words, a person is as much as 34 times more likely

to appear in a picture than a sheep. This imbalance results in three major problems.

Firstly, for classes with a small percentage in this pie chart the learning algorithm has

too few examples to learn from. The basic intuition behind all learning algorithms

is to use a pile of images with an object X and another pile without this object and

extract the relevant information co-occuring with the particular object. So, the greater

the number of images in the pile, the better. Secondly, most of the learning algorithms,

as well as the SVM model and the LDA-based one that we use in this project, tend to

have a bias for the most dominant classes when the task is multi-class classification.

This problem is analysed in detail in the evaluation section. Finally, such imbalance in

the data makes the evaluation of the algorithm a difficult task. When a single number

of the performance of the algorithm across all classes is needed, there is the option of

weighting the performance for each class equally or according to its prior. For such

differences in the priors these two methods would produce very different results, and

further analysis is required. This problem is, again, described in the evaluation section.

3.2 Feature Extraction

In order for a learning algorithm to be able to process the visual dataset, each image

must first be transformed into a feature-set which reflects its visual contents in the best

possible way. This problem (called feature extraction from images) is purely a com-

puter vision one and forms the basis and most important part of the entire process of

4http://www.flickr.com/
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object categorization. This is obvious if we consider that a feature extraction process

which could -ideally- produce features containing only the relevant information about

the depicted objects in an image, would in fact solve the object recognition problem

itself. However, as this is not possible, further algorithms (like classification) are re-

quired in order to learn from the statistical properties of these feature set.

The overall procedure of extracting and representing features is, basically, a se-

quence of 3 steps, as shown in figure 3.3.

Figure 3.3: The overall procedure for object categorization, with a focus on feature extraction.
source: http://staff.science.uva.nl/ ksande/research/

Firstly, a feature detector is applied to the image in order to find its interesting parts

(for example edges, smoother areas etc). Then, a feature descriptor creates the final

features by finding a way to describe the properties (which include color, texture etc)

of the interesting parts detected in the previous step. The set of all features is called

codebook. Finally, a visual codebook representation is created, which basically is

the set of attributes that a learning algorithm would receive as input. Different kinds of

codebook representations imply different assumptions about the dependencies between

the features. Note that for this section only we use the term “attribute” (which refers

to the codewords, the input of the learning algorithm) to distinguish it from the term

“feature” which is basically a descriptor of an interest point. These notions are similar

in the sense that features form codebooks and a codebook model is applied in order to

form the final attributes. Features characterize the image, while attributes are learned

from the whole database, based on the feature-set. In general, though, when the use of

“feature” is clear within a context, the term can be used in both cases.



26 Chapter 3. Datasets

Further preprocessing can be applied to the feature-set or to the attribute-set, upon

the completion of the above process. For example, dimensionality reduction techniques

could reduce the dataset size as well as the embeded “noise” in the data. Furthermore,

attribute selection [Guyon and Elisseeff, 2003], which is basically a form of dimen-

sionality reduction, could be applied in order to select the attributes which are the

most informative and useful for the learning algorithm. A lot of other statistical tech-

niques could further pre-process the dataset, especially after performing exploratory

data analysis on the data and acquiring specific, domain knowledge. However, in this

project we limit the feature extraction procedure to the basic steps of feature detec-

tion and description, codebook creation and, finally, image representation based on the

codewords. The reasons why we chose this path are the following:

• The purpose of the project is to evaluate the performance of a particular kind

of methods to object categorization, by comparing the results with a baseline

model. Thus, our efforts are focused on comparison and result analysis, rather

in building the optimal learning algorithm.

• Given the above, we also focus on the general principles of the algorithms being

discussed, and we want the whole procedure to be as generic as possible.

• Most of the pre-processing techniques are mostly suitable for datasets with two

or, in general, few classes. For example, feature selection is usually done when

the objective is to find those features that lead to the best prediction of a particular

class.

Obviously, feature detection and description are low-level image processing meth-

ods but, fortunately, a lot of work has been done in this field. This allows researchers to

build a feature extraction framework by relying on existing implementations which are

responsible for the low-level procedures required for image processing. What is more,

many publications (like [Grangier et al., 2006]) compare the existing approaches in a

higher level. By relying on publications and software like the ones described we are

able, thus, to choose a particular approach based on our specific needs, without having

to perform a deep research into the low-level image processing algorithms and theory.

In the rest of this chapter we explain in greater detail the feature extraction steps in the

depth that is needed in order to be able to reason about our approach; we discuss about

the possible options as well as the ones that were finally selected for this project, we

reason about our selection and describe the implementation details.
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3.2.1 Feature Detectors

Feature detection is also referred to as sampling, because it seeks for a very small sam-

ple of pixels given the whole image. A basic property that such methods should fulfill,

is repeatability, i.e if there is a transformation between two instances of an object in

different pictures then the corresponding points should (ideally) be detected [Csurka

et al., 2004]. For the purpose of image classification, it is obvious that high repeatabil-

ity is desirable, as we would expect similar detections for images which depict objects

of the same class. In figure 3.4 we can see three images along with a detected region

(yellow circle): the original on the left and two transformations in (b) and (c). In case

(b) the detector uses a fixed-scale scanner and is unable to capture the same part of

the image as in (a), while in case (c) the detector has high repeatability and uses a

scanner which re-scales in order to capture the same part of the image even after the

transformation has been applied.

[Lindeberg, 1996] show that scanning the images in different scales may result in

very different outputs. Thus, there is a single scale for which the results are better.

In order to define it, one option would be to scan the image multiple times, at many

scales. However, this is time consuming and suffers from various other problems.

Automatic scale selection is a technique which is used to avoid multiple scanning in

many scales and to achieve high repeatability. It refers to “an explicit mechanism

which automatically adapts the scale levels to the local image structure” [Lindeberg,

1996], even when the algorithm is applied to unknown environments.

(a) (b) (c)

Figure 3.4: An example which illustrates repeatability: a transformation is applied to the
original image (a) resulting in images (b) and (c). The detector applied in (b) is lacks of
repeatability.

There are five basic approaches for feature detection: edge detection, corner / inter-

est point detection, blob / region detection, ridge detectors and simple dense sampling.

However, the distinction between these groups is not clear and there are approaches
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which combine these ideas, as well as approaches which are classified to a different

category by different researchers. In particular, corner detectors and blob detectors

share some common properties. Note that ridge detection is not commonly used for

object recognition purposes, and for this reason it will not be further explained.

Edge detection (figure 3.5) is the technique of identifying edges in an image. An

edge is typically defined as a discontinuity in the physical, photometrical and geo-

metrical property of a visual object ( [Ziou and Tabbone, 1998], [Lindeberg, 1996]).

This kind of discontinuities are usually a result of a variation in the material proper-

ties, illumination, depth and orientation of surfaces. The motivation behind this idea,

is that identifying such points would result in finding a boundary between two image

regions. In turn, the sets of boundaries -represented as connected curves- is likely to

form the boundary of objects depicted in images. [Ziou and Tabbone, 1998] groups

typical edge-types into steps, lines and junctions according to their “properties” and

the type of phenomena that causes them. For example steps, for which the authors

argue that is the most common edge-type, are the points where the grey level disconti-

nuities occur, something that is usual in the parts where two objects meet or a shadow

is cast.

Figure 3.5: The original image and the one with the edges detected by an edge detector.
Obviously, sets of detected pixels form the outline of objects. source: [Ziou and Tabbone,
1998]

Interest point detection (also, salient point detection) seeks for interest points,

which can informally be described as points in an image which have a concrete math-

ematical definition (for example a corner), well-defined location and are invariant to

viewpoint changes such as scaling and rotation -thus having high repeatability. There

are also detectors which are invariant to affine transformations too [Mikolajczyk and

Schmid, 2004] (in fact, scale transformations are a special case of affine transforma-

tions). However, the term “interest point” is general of its nature, and the relative ap-
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proaches should define what kind of information the detected points provide. Corner
detection (figure 3.6) is a special case of interest point detection, as a corner fulfills

the properties described above. Scale and affine invariance are, thus, the most impor-

tant properties that an interest point detector should have. Intuitively, these properties

suggest that the algorithm should be able to identify the similarity of the same regions

in different images, even if affine or scale transformations have been applied to them.

However, the requirement for a detector to be truly scale and affine invariant is just

ideal. In practice, the magnitude of these factors’ invariance is one of the measures

used to evaluate detection algorithms [Schmid et al., 2000]. A comparison and expla-

nation of such methods can be found in [Mikolajczyk and Schmid, 2004].

Figure 3.6: The original image and the one with interest points (coreners) detected by the
harris-laplace corner detector. source: [Mikolajczyk and Schmid, 2001]

Blob / region detection (figures 3.7 5 and 3.3) is a method similar to interest point

detection. Indeed, there exist algorithms that are classified in both groups. These

approaches detect interest points too, however, they can also detect regions of interest

points which are too smooth for a corner detector to capture. [Mikolajczyk et al., 2005]

explains that the term “region” in this context refers to a set of pixels, i.e any subset of

the image. The authors also underline that this is opposed to the traditional use of the

terms “region” or “blob” in the context of image segmentation, since the region bound-

aries do not necessarily have to correspond to discontinuities of the surface’s texture or

color. Moreover, as it is evident from the experimental results of [Mikolajczyk et al.,

2005], regions detected by such algorithms are usually very small in comparison to the

whole picture. For example, in [Grangier et al., 2006] one can see this different usage

of the term “blob”. It is worth mentioning that corner detectors combined with au-

tomatic scale selection, such as the Harris-Laplace corner detector [Mikolajczyk and

Schmid, 2001] (which is also depicted in 3.3) are very common.

5source: http://www.kki.yamanashi.ac.jp/õhbuchi/online pubs/ACM CIVR2009/CIVR09 web.pdf
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Figure 3.7: The regions detected by the region detector Harris-Affine.

Finally, dense sampling (for example used by [Horster et al., 2008]) refers to the

simplest method: a grid (of any shape) is applied over an image and samples pixels.

The most unsophisticated version is when every d pixels are sampled, with d being

an input parameter, called the spacing parameter. Typical dense sampling algorithms

automatically adjust the scale at which they sample by taking into account the image’s

dimensions and the spacing parameter. However, there is also the option of sampling

at more than one scales. An example of dense sampling is shown in figure 3.3 as well

as in figure 3.8 6.

Figure 3.8: A grid applied to an image for dense sampling.

It is worth noting here, that the spatial pyramids concept [Schmid, 2006], shown

graphically in figure 3.3, has to do more with the codebook creation rather than the

sampling process itself. Although any feature detection algorithm can be used in the

first step of the feature extraction process when spatial pyramids are used, slight mod-

ifications must be applied in order to form the spatial pyramids model, and this is the

reason why it is shown in the first part of the process as well.

6source: http://www.kki.yamanashi.ac.jp/õhbuchi/online pubs/ACM CIVR2009/CIVR09 web.pdf



3.2. Feature Extraction 31

3.2.2 Feature Descriptors

While feature detection finds the regions or points in an image which are the most “in-

teresting”, feature descriptors extract the actual features out of these locations. There

are two basic approaches for producing a feature set. The first one concerns the com-

putation of local features, i.e features which are computed over a limited spatial sup-

port [Csurka et al., 2004]. The feature detection algorithms described above are usually

combined with local features producing compact vectors which characterize the region

around interest points, and this is why we will focus our description on them. However,

in section 3.2.3 we discuss about a more general kind of features. For this subsection,

the term “features” will refer to local features.

Given the great importance of a good feature-set for any task that requires it, feature

descriptors must be repeatable (a term used for feature detectors as well). The concept

of repeatability is, thus, extended for the context of feature descriptors and -in this

context- can be described as the property which defines the following: if there are two

images depicting the same object under different viewpoints and their corresponding

interest points are detected, then we would ideally expect the corresponding values for

the features to be identical. For image classification tasks a high degree of repeatability

is necessary, and is achieved with methods that are invariant to changes of viewpoint

(scaling transformations etc). Other desirable properties of feature descriptors include

robustness against geometric and illumination variations [Csurka et al., 2004].

Unlike feature detectors, descriptors cannot be easily grouped into categories in a

higher level. A feature descriptor is basically characterized by the type of properties

which tries to extract from the detected areas (for example, texture, color etc), by the

specific algorithm used in order to achieve this (many algorithms use heuristics) and,

finally, by their robustness to variations of viewpoint. Therefore, a reasonable way to

start a research in order to find the best descriptor for a particular task is to examine

the state of the art and focus on the experimental results acquired by studies which

investigated similar tasks.

Scale-invariant feature transform (SIFT) features 7 [Lowe, 1999] are a very

popular choice for vision tasks which involve image categorization ( [Grangier et al.,

2006], [van de Sande et al., 2008], [Csurka et al., 2004], [Horster et al., 2008]). They

represent the local shape of a region as a sequence of 128-dimensional vectors using

edge orientation histograms. The way in which they are computed are beyond the

7this algorithm is patended by the University of British Columbia, http://user.cs.tu-
berlin.de/ nowozin/autopano-sift/
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scope of our research in this project, but it is worth mentioning the algorithm’s attrac-

tive properties which made it so popular. These, as already discussed, result in high

repeatability. More specifically, SIFT are invariant to image scaling, rotation, transla-

tion and partially invariant to illumination changes and affine or 3D projection. They

are also highly distinctive (only a few number of SIFT features computed on a visual

object can capture a lot of “useful” information about it) and robust to noise. Although

they are easy and fast to extract, they produce good results in the object recognition task

even if images are partly occluded and in a cluttered background, as proved in [Lowe,

1999].

However, the first step of an algorithm for SIFT-feature extraction is to convert

the input image to grey-scale. This means that they provide an inadequate description

of the region’s color properties despite the fact that for many object recognition tasks

this is essential (for example the skin or the sky can better be identified in images if

richer color information is present). Consequently, many approaches try to develop

new algorithms, or even to extend the SIFT algorithm in order to include richer color

information as well. Many versions exist and their main difference is the color model

that they use for color representation, for example HSV, color moments etc. The term

“color descriptors” can be used for the whole category of these algorithms, and a very

interesting description and comparison can be found in [van de Sande et al., 2008].

3.2.3 Global versus local features

In section 3.2.2 the discussion was focused on local features. However, global fea-
tures, which are applied in larger areas of a picture and capture more general proper-

ties of it, can also be used. In section 3.2.1 we made a distinction between blob-like

regions detected by blob/region feature detectors and blobs created via segmentation.

Only in this section, we will refer to a blob as being the feature set of a large part of an

image created via segmentation, i.e we won’t use the term with the meaning that was

assigned to it in section 3.2.1. The usage of such features are more usual in the context

of automatic image annotation. [Grangier et al., 2006] and [Barnard et al., 2003] are

two examples.

Blobs are created via image segmentation, for example with the Normalized Cuts

(N-cuts) algorithm of [Shi and Malik, 1997] and tend to be large color-uniform regions

with features describing its colors, texture, shape and location [Grangier et al., 2006].

Just like feature detectors, segmentation can be thought as a uniform-region detector.
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However, the standard way of treating such features is not a bag-of-words represen-

tation, but instead iterative procedures such as the one described in [Duygulu et al.,

2002].

3.2.4 Visual codebook model

The Bag-of-Words model is a usual choice for representing visual codebooks of local

features. When this generic model is applied to visual features, the resulting represen-

tation is also called bag of visual words or bag of visterms (BOV) [Quelhas et al., 2005]

or bag of keypoints [Csurka et al., 2004]. Unfortunately, given that this method follows

the assumptions mentioned in section 2.2.1, it disregards all information connected

with the spatial layout of the features and thus, is less descriptive. By treating each

individual feature independently, properties of the whole or a large part of an object,

like its shape, can never be modeled, because this would require several features to be

related in some way. Even worse, the separation of an object from its background is

not obvious. However, overcoming this caveats is considered to be a challenging task

and only few efforts have been made towards this direction [Schmid, 2006].

3.3 Implementation and final datasets

In this section we reason about our choices regarding the issues described in 3.2 and

provide implementation details. As already mentioned, the main objective of this

project is the performance evaluation of a topic model based algorithm by compar-

ing it with a baseline. Thus, our focus has not been given into extracting the best

possible features, but the main interest regards the development of a feature-set that

is as proper as possible for the particular task that we have, i.e performing object cat-

egorization using an LDA-based algorithm from the image annotation domain. This

does not mean that we bias our choices to favor the LDA-based model. In fact, the

SVM model used as a comparison is just a baseline, and the only way in which we

try to boost its performance is by finding a feature set which is “objectively” good,

while for the LDA-based classifier we do want to determine the feature-set’s aspects

that are more appropriate for our model. All these aspects are explained in the rest of

this chapter.

Local features
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In this project we decided to use local features instead of blobs for the reasons de-

scribed below. Firstly, because in connection with the standard way of being repre-

sented (a bag of words model) have demonstrated “impressive levels of performance”

for object recognition tasks [Schmid, 2006] as well as for tasks which involve the train-

ing of a topic model [Horster et al., 2008]. The fact that [Horster et al., 2008] claim

that PLSA performs better using local image characterizations gives a reasonable ar-

gument that this kind of features would lead to better performance for our LDA-based

model as well. The authors present the opinion that local features are more flexible

than global ones and manage to reveal more meaningful patterns in images. Global

features are usually used when the objects depicted in images are greatly correlated

with their background and, thus, modeling the entire image can actually help recogni-

tion. However, in a challenging dataset like PASCAL where objects are presented in

cluttered backgrounds and can be occluded, we need more flexible descriptors.

Corner detection and dense sampling
For feature detection we chose to experiment with the corner sampling and the dense

sampling strategy for the reasons explained below. Regarding dense sampling, it

seemed like a good option for our case, as [Fei-Fei and Perona, 2005] proved that

this kind of feature detection is better than interest point sampling when the classifier

is LDA-based. This can be explained intuitively, if we consider that a grid which is

applied to an image can collect information about uniform regions such as sky or grass.

Although this property is highly desirable for the scene categorization task of [Fei-Fei

and Perona, 2005], in our case it is not obvious how it could lead to a better feature

set. However, given that our LDA - based model is capable of capturing some very

general relations among the features of the codebook, we expect that this approach

would have good results. For example, the presence of a visual word which is highly

related with sky could be thought as a bias towards predicting the class “aeroplane”.

Moreover, [Nowak et al., 2006] found that even random sampling is often more dis-

criminative than a keypoint-based one for object categorization tasks, supporting the

idea that for such problems simpler solutions may be better.

As for the implementation, given that the winners of the PASCAL challenge

2008 [van de Sande et al., 2008] provide for free their feature detection and description

software 8, it is a reasonable choice for our project as well. We used it to sample every

6th pixel of each image. The software selects automatically a good scale for sampling.

8software available at: http://staff.science.uva.nl/ ksande/research/colordescriptors/
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As all images in our experiments are approximately of the same size, the same number

of points is computed for each image (about 4971), which is convenient for the clus-

tering that follows the feature detection and description procedures, as explained later

in this chapter.

However, it is reasonable to test a more sophisticated method as well. There-

fore, we also created a different feature set using the Harris-Laplace [Mikolajczyk

and Schmid, 2001] corner detector (with the same software) in order to take advan-

tage of its invariance properties. The motivation for this choice is that our challenging

dataset requires a detector more robust to changes of viewpoint. Using this detector

we obtained various number of interest points for different pictures. For most of the

pictures this number ranged between 600 and 2500.

SIFT and transformedColorSIFT feature descriptors
As for feature descriptors, we chose SIFT and a variation of SIFT which also encloses

color information. More specifically, [Csurka et al., 2004] present various arguments

as to why SIFT features can be used in conjunction with a bag of visual words rep-

resentation. For example, the authors argue that since these features are simple linear

Gaussian derivatives, they are expected to be less affected by noise, in comparison with

descriptors which are higher Gaussian derivatives. But the most dominant reason why

we think SIFT will be ideal for our task, is that previous research has shown that SIFT

outperform other approaches in tasks similar to the one attempted in this project. For

example [Mikolajczyk and Schmid, 2005] compared different approaches in an image

database similar to the one that we use and found that SIFT perform the best. This kind

of descriptors is also preferred from researchers, for the particular dataset (PASCAL)

that we use in this project [Nowak et al., 2006] or for the particular kind of classifier

(one based on topic models) that we also have [Quelhas et al., 2005].

However, as already mentioned in section 3.2.2, SIFT descriptors transform the in-

put image into grey-scale and consequently ignore valuable color information. [van de

Sande et al., 2008] compared 15 different color descriptors on the PASCAL dataset

2007 and found that only the ones which are combined with SIFT can outperform pure

SIFT. Given that the authors of [van de Sande et al., 2008] were the winners of the PAS-

CAL 2008 challenge, i.e the classification competition on the exact dataset that we also

use, it is rather reasonable to base our own descriptor selection on their approach. They

actually use a combination of 5 different color descriptors with equal weight, but for

our purposes we believe that using one of these color descriptors is enough. We chose
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the transformedColorSIFT, which is proven to outperform pure SIFT in the PASCAL

dataset because, as the authors argue, the extra color information which they include

can be used in order to increase discriminative power and illumination invariance. This

kind of descriptors add extra information to the 128-length vector that normally SIFT

produces and this results in a 384-length descriptor vector for each interest point.

Bag of visual words codebook representation
Since local features were chosen for this project, a bag of visual words (BoV) is a nat-

ural choice for the codebook. Although in section 3.2.4 many caveats are mentioned

for this type of representation, it still is a good option. It is true that there are, theo-

retically, better approaches such as spatial pyramids [Schmid, 2006], however, none of

these alternatives has been tested to the extend that BoV has been tested and proved

its effectiveness. Moreover, for the special case of applying topic models for object

categorization purposes, it has been shown [Quelhas et al., 2005] that, in a sense, they

disambiguate the bag-of-words representation. More specifically, a direct effect of the

implied independence that the BoV imposes, is that problems of polysemy (one visual

word may represent two or more parts of different objects) and synonymy (the same

part of an image may be represented equally by many different visual words) arise, ex-

actly like one would expect in the linguistics domain. For example, in figure 3.9 each

row represent sets of similar visual words and polysemy is obvious because, as can be

seen, completely different aspects (eyes and windows/city environment) are grouped

together.

Figure 3.9: Polysemy in visual terms. source: [Quelhas et al., 2005]

However, as [Hofmann, 1999] clearly proves, topic models are capable of handling

successfully polysemy and synonymy for text data, and we expect the same to happen

for visual data as well.

As for the implementation details of how each image is represented into a bag

of codewords, we followed the classical procedure described in [Csurka et al., 2004].

Firstly, we use K-means to cluster all feature descriptors from all images in the training

database using K centers. The choice of K is very important because it will constitute
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the number of attributes in the final representation of our training dataset. Given that

there is an average of about 1500 descriptors per image with each descriptor being

a vector of 128 (for SIFT) or 384 (for transformedColorDescriptors) elements and

that all images in the training database are more than 2000, the system requirements,

mainly in memory and computational speed, exceed the available ones. Thus, we

have to select a representative subset of all features and perform clustering on these

only. Many researchers select this subset randomly. In our project, we select every X

features from each image uniformly. We set X to a value such that at least 5 features are

sampled from each image and the final number of features does not overpass the limits

of our computational resources for clustering (i.e the maximum matrix dimensions

that MATLAB can handle). In the next step, we use MATLAB to vector-quantize

descriptors. Every local descriptor d is mapped to number i, i.e the label of the cluster

C which is closest to it by using the neighbor rule:

d 7→ i↔ dist(d,Ci)≤ dist(d,C j),∀ j = 1, ...,K (3.1)

Finally, each image is represented as a single vector < I1, I2, ..., IK >, where Ii is

equal to the number of times that any of its descriptors was mapped to the class-label

i divided by the total number of descriptors in that image, i.e it is a normalized count
vector and all of its elements sum to 1. Alternatively, we could have used a count

vector without normalization, but when the number of features is large normalization

usually helps. Using an unnormalized count vector results in discrete attribute values,

while using a normalized count vector results in continuous attribute values, an issue

which will also be discussed in section 5.1, as for each case different distributions are

most appropriate.

Returning to the issue about how to set K, i.e the codebook size, [Nowak et al.,

2006] and [Csurka et al., 2004] suggest that intermediate to larger codebooks result

in lowest classification error. Thus, we clustered the descriptors with 300 centers, the

highest possible number given our computational resources, since the points to be clus-

tered are thousands and high dimensional.

Final datasets
Given all the above selections for feature extraction, we ended up with 3 different

feature-sets plus an additional one 9 obtained from http://www.inf.ed.ac.uk/teaching
9Although this feature-set was not created by us, detailed description of the steps followed during

its creation are available at: http://www.inf.ed.ac.uk/teaching/courses/iaml/assts/a108.pdf , and thus, it
is comparable to our own feature-sets.
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/courses/iaml/. All of the feature-sets are also summarized in table 3.1. Note that we

used the default parameters of the software for the Harris-Laplace detector. Also, a

code-name has been assigned to each feature-set as an id.

Table 3.1: The final feature-sets produced.

Note that for each different feature-set the same splitting technique is applied, as

described in section 3.1, resulting in one training, one validation and one test set for

each.

The datasets described above are ready for general use. They are basically text

files where each row represents a document whose features (K in total, where K is

the number of clusters used in the procedure described above) are separated with a

space. However, different algorithms need the input in different formats. For the SVM

program we only had to add the class labels of the training set. For the case of our

LDA-based algorithm, we had to represent each dataset as two parts: the first contains

only the labels and is treated as a corpus of text, while the second contains only the

visual features. There is a 1-1 corresponence between rows from each dataset: a row i

in the labels’ file is actually a “caption”, and is the right one for the image of line i of

the visual features’ file. This is done for reasons that will become clearer in chapter 5.
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SVM model

In this project, we treated the visual object categorization challenge as a traditional

classification one, where each object’s name corresponds to a class label. Various re-

searchers, such as [Foody and Mathur, 2004], found that SVM classifiers are ideal for

image classification. Consequently, we chose this kind of classification algorithms for

our purpose. However, as SVM’s are binary classifiers, the original multi-class prob-

lem has to be decomposed to binary (2 class) problems. We chose the 1-vs-1 method

to do this, as described in [Friedman, 1996], and multi-class probability estimates are

acquired for the whole set of classes. The award-winning libSVM toolbox [Chang and

Lin, 2006] was used for the implementation.

The term SVM refers to a general family of algorithms rather than to a specific

method. Different choices for its kernel, its parameters and its way of solving the

quadratic problems result in very different models (as described in section 2.1.2). For

this reason, we experimented with different combinations of these options (our ex-

perimental set-ups were based on findings described in existing publications), and we

based our final selection on these results.

The rest of the chapter explains in more detail the properties and principles dis-

cussed above and analyses the approach and methodologies used in this project for the

specific problem and multi-class dataset that we have.

4.1 Notes on the implementation and the software

The libSVM 1 toolbox [Chang and Lin, 2006] was used for our purposes. As men-

tioned above, there are many issues to consider when using a SVM model and each

1available at: http://www.csie.ntu.edu.tw/ cjlin/libsvm/

39
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combination of choices leads to different models. The libSVM software has some

built-in features which cannot be changed without interfering with the source code but

the authors argue that they embedded the most optimal choices. For example, it uses a

specific approach for decomposing the multi-class problem (although we implemented

a perl script for a second one) and for solving the quadratic problems. However, it

also leaves some freedom as regards parametrization. What is more, the fact that it

is not based on an API makes it extremely flexible. We found this flexibility to be

very important in our experiments, because it allowed us to combine the program with

multiple Perl, system or even MATLAB scripts. Finally, the software is limited to

the actual classification problem and is incapable of performing evaluation measure-

ments, especially for the multi-class problem. Thus, we had to program in Java and in

MATLAB our own evaluation code.

Finally, it is worth mentioning that libSVM uses “an SMO-type Decomposition

method” for solving the quadratic problem (2.2) and the one needed to find the α’s in

equation (2.3). The analysis of this method is beyond the scope of this project and can

be found in [Chang and Lin, 2006].

4.2 Dealing with the multi-class problem

There are many approaches which can be used to solve a multi-class problem with

SVM’s, which were initially designed for the special case of 2-class tasks. In general,

there are two kinds of methods: the first considers interfering with the optimization

function (2.2) of the model in order to be able to extend its capabilities for more classes

[wei Hsu and Lin, 2001]. However, this leads to a difficult and complex optimization

problem. The second, and most common solution, is to decompose (“binarize”) the

original problem into many binary ones. Then, probability estimates can be found for

each of these subtasks which are finally transformed into probabilities for each class

in general. In this project we use the second approach, as was made obvious from the

background section 2.1.3.

4.2.1 Decomposing the multi-class problem

The two most popular methods for transforming a multi-class problem into many bi-

nary ones, are one-against-all (1-vs-All) and one-against-one (1-vs-1, or pairwise cou-

pling).
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1-vs-All is the most common strategy [Gidudu et al., 2007] and defines the algo-

rithm in which the original problem with C classes is transformed into C new binary

problems which are solved in the manner described in section 2.1.2. More specifi-

cally, for every class label c ∈C, a new binary problem is constructed which involves

classifying instances with labels c and “not-c”. For example, for the class “Person”

in our dataset, every instance belonging to this class is assigned label “1” and the rest

are assigned label “-1”, without examining which other objects are also depicted in the

same image. The score of classification for class c is simply the score achieved in the

specific subproblem created for this label. In terms of implementation, thus, this ap-

proach involves creating C copies of the original dataset and modifying the class-labels

assigned to instances in each one.

On the other hand, pairwise coupling decomposes the original problem to N =

C(C− 1)/2 binary ones, where each subproblem involves learning to distinguish be-

tween a pair of classes (ignoring the rest C− 2). This can be achieved by modifying

the learning rule of equation (2.2) in the way shown by [Chang and Lin, 2006]:

min
wi j,wi j

0 ,ξ
i j

1
2
(
wi j)T wi j +C

n

∑
t=1

ξ
i j
t

sub ject to : yi j
t

((
wi j)T

φ(xi j
t )+wi j

0

)
≥ 1−ξ

i j
t (4.1)

ξ
i j
t ≥ 0, t = 1...n

i f xi j
t belongs to class i : yi j

t = 1 else yi j
t =−1

In the testing phase, a test point is classified with all N classifiers obtaining, thus, a

vector of N labels and a voting system is used in order to get the final prediction. More

specifically, the label which is most frequent in the vector of N labels is the one emitted

as the final prediction (a voting strategy that is also known as “Max Wins”). However,

one should decide how to break potential ties.

In this project we had the freedom to choose any of the approaches mentioned

above. libSVM implements the pairwise coupling one but we also implemented a perl

script for the 1-vs-all approach, since it is very straightforward. However, we chose to

use the first method, based on the findings of [wei Hsu and Lin, 2001] and [Gidudu

et al., 2007]. More specifically, although these studies were conducted independently

and on a different kind of datasets, they both conclude that 1-vs-1 and 1-vs-all result in

almost the same performance with 1-vs-1 being slightly better. However, we noticed

that 1-vs-1 is faster during training time, which at first seems to be a paradox, since it

builds C(C−1)/2 new problems in contrast with the 1-vs-all approach which creates
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only C. Our observation, though, is consistent with [wei Hsu and Lin, 2001], which

goes one step further and explains that this is due to the fact that the sub-tasks created

by pairwise coupling are actually smaller, since they concern a subset of the whole

dataset, i.e instances which belong to any of the two classes to be tested as a pair.

Given that finding good parameters is a far more critical issue and that there is a trade-

off between training time required and number of experiments conducted, we decided

to follow the pairwise coupling technique.

4.2.2 Probability outputs

SVM’s base their prediction for a binary classification problem on the sign of the real

valued function f (equation (2.4)). However, as already mentioned, we need to find a

way to predict probabilities. More formally, for a data point x and for each of the C

different classes we aim at obtaining:

pc = p(y = c∣x), c = 1, ...,C (4.2)

Given that we follow the one-vs-one approach, the problem can be formalized as fol-

lows:

Firstly, the pairwise class probabilities must be estimated:

ri j ≈ p(y = i∣y = i or j,x), i, j = 1, ...,C (4.3)

This can be done by simply mapping the real values of function f (see equation (2.4))

into ones belonging in the interval [0,1]. Fitting a sigmoid to the output of f is a

straightforward solution. However, the libSVM software, which we use, follows an

improved technique proposed by [tien Lin et al., 2003]:

ri j ≈
1

1+ eA f+B (4.4)

where A and B are parameters to be estimated using the Maximum Likelihood (ML)

approach for the training dataset, as described in [tien Lin et al., 2003] in more detail.

Secondly, the actual class probabilities pi as defined in equation (4.2) can be com-

puted based on r’s. Again, various approaches exist for this issue. [fan Wu et al., 2003]

review two of them and suggest another two techniques. libSVM software implements

the second approach described in this publication and is based on the idea that:

p(y = i∣y = i or j,x) ⋅ p(y = j∣x) = p(y = j∣y = i or j,x) ⋅ p(y = i∣x) (4.5)



4.3. Choosing a kernel 43

This observation leads into the following optimization problem:

min
p

1
2

C

∑
i=1

∑
j: j ∕=i

(
r ji pi− ri j p j

)2 (4.6)

sub ject to
C

∑
i=1

pi = 1, pi ≥ 0, i = 1, ...,C

libSVM software uses an iterative procedure (which is described in [Chang and Lin,

2006]) in order to solve this optimization problem.

4.3 Choosing a kernel

In section 2.1.2 the formulations of the basic kernel functions were introduced. It was

also mentioned that choosing a suitable kernel is vital because different kernels result

in different mappings of the data space to the feature space. libSVM allows to use any

of the kernels mentioned in section 2.1.2 and, thus, we had to base our selection on

some experiments, designed on the basis of research in the relevant literature. For the

reasons explained below, we decided to experiment with a linear and an RBF kernel.

First of all, an RBF kernel is a common choice as it is able to capture the nonlinear

relationships between the actual class values and the attributes. [Eichhorn et al., 2004]

test combinations of kernels and show that a RBF kernel (used as a minor in that case)

is the best for SIFT features extracted for object categorization. On the other hand, a

linear kernel cannot perform a mapping to a higher dimensionality space. Moreover,

as [Hsu et al., 2003] argues, a linear kernel is actually a subcategory of an RBF kernel,

for specific parameters. However, the same publication suggests that for a large num-

ber of attributes (compared to the number of instances) a linear kernel might perform

better, because the data space has already many dimensions. In our project, we have 4

different feature sets with number of attributes being 500 for the first and 300 for the

rest. Our database consists of 2093 training instances and only 350 and 759 validation

and test instances respectively. Thus, the attribute number is large when compared to

the number of instances. In fact, we believe that such a ratio suggests that both, a linear

and a RBF kernel should be tested.

As for the two other kinds of kernels, (i.e sigmoid and polynomial), [Hsu et al.,

2003] argues that a sigmoid kernel is proven to perform as good as an RBF one for

some parameters and [Kahsay et al., 2005] tested various non-linear kernel choices for

the specific task of visual object recognition (which is similar to ours) and found that
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there exist no significant changes in the performance. However, another argument for

not using a polynomial kernel is that it has more parameters.

The results from the experiments conducted in order to select the optimal kernel

are presented in the following section (4.4).

4.4 Model selection

In this section we will describe the experimental procedure and the results obtained

during the model selection process, i.e the process to define the kernel and the parame-

ters to be used. Before we present the experimental results, it is worth mentioning that,

since the 1-vs-1 approach is used for binarizing the problem, arguments given to the

program as parameters are shared from all of the C(C−1)/2 classifications created.

Experiments for defining the kernel
In our experiments we tested a linear and an RBF kernel. Section 2.1.2 presents

the forms of these kernels where it is obvious that the RBF one has a parameter γ.

Moreover, one must also define the cost paramter c of equation (2.2). The experimental

setup involves testing the SVM models with the following sets of parameters:

c ∈ {2,16,64,128,1024,4096} (4.7)

gamma ∈ {0.0078125,0.05,0.125,0.5,2,64} (4.8)

Note that the different parameters tried are in a logarithmic scale, since this level of

precision is considered to be enough. The linear kernel model for a specific ci was

compared against the RBF kernel model with c = ci and the best gamma found for

this ci. The tests were performed on the validation set of a single feature-set (more

specifically of the dSIFT500 - see table 3.1) and the evaluation measure used was

Macro Average Precision (MAP) which is described later, in section 6.1. For now, it

is enough to keep in mind that this measure is a summary of the performance over all

classes.

As for the experimental results, we observed the following phenomenon: although

the RBF kernel resulted in better performance (about 2-3% better than the linear

one) for every c and for the best γ for this particular c, there existed some gamma values

for which the performance was unacceptably low -even the 1/3 of the performance ob-

tained from the linear kernel. In contrast, none of the c values tried resulted in such an

unacceptable performance for the linear kernel. In addition, [Hsu et al., 2003] presents
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some example applications of their software and, indeed, some bad choices for the

parameters of the RBF kernel result in accuracy even below 50%. Consequently, we

decided to use the RBF kernel keeping in mind, though, that enough tests must be

conducted in order to define good parameters, as this can determine dramatically the

performance.

Experiments for defining optimal parameters
Since the RBF kernel was chosen, there are two parameters to define:

• c, which is the cost parameter of equation (2.2)

• gamma, which is the γ parameter appearing in the RBF kernel function described

in 2.1.2

Although there is a theoretical explanation about how changing these values affect the

model, the most common procedure followed in order to find the optimal parameters

is to try as many as possible and compare the results. However, in this case we wish to

define the best parameter setting for each of the feature-sets of table 3.1, because the

final comparison (chapter 6) is performed for each one of them separately. Thus, for

computational reasons we had to reduce the different combinations of c and gamma

of formulas (4.7) and (4.8). In table 4.1 the different parameter combinations used for

the experiment are presented. Smaller values of γ were generally found to be better

in the experiments for kernel selection, described previously, and that is why we use

this subset. In table 4.2 one can see the combination id’s ordered according to the

corresponding model’s performance in the validation set of the dataset of column 1.

Square brackets indicate equal performance.

Combination id c gamma

1 1 (1/#features)

2 2 0.0078125

3 1 0.002

4 16 0078125
Table 4.1: The different parame-
ter combinations tested for the SVM
model.

Dataset Best combination
(id) ordered

dSIFT500 2,[1,3],4

cSIFT300 2,4,1,3

dSIFT300 2,4,3,1

hSIFT300 2,1,4,3
Table 4.2: The ordered id’s of differ-
ent combinations of c and γ parame-
ters.

Obviously, combination 2 (i.e c=2, γ = 0.0078125) is the best in all feature-sets.

However, the performance for the rest of the combinations varies significantly.





Chapter 5

LDA based model

This chapter includes details about the design and implementation of our extended

LDA model for image-caption pairs. Its structural parts form, in turn, a different kind

of pairs: word-caption and visterm-image dyads. This kind of models is traditionally

used for image annotation tasks and that’s why we will refer to “word-caption” and

“visterm-image” pairs, i.e a dataset which contains captions as a bag of words and a

dataset which refers to images represented as a bag of visual words (visterms). In order

to keep terminology uncluttered and underline the similarities with the basic LDA

model (described in 2.2) we will maintain the terms “word” and “caption”, however,

it is important to keep in mind that since our model has been applied for an object

categorization problem, one can interpret the term “word” as “class label” and the

term “caption” as “label set”.

5.1 Design

The design of our LDA-based model follows the same pattern used in most of the

existing implementations described in section 2.4.1. Since the code for any of the

LDA-based models for image annotation is not publicly available, we had to develop

our own version and make our own assumptions and choices. Actually, our model is a

slight modification (the implicit modifications made are mentioned later in the chapter)

of the GM-LDA model, described in section 2.4.2. For these reasons, we will refer to

our model as “the extended LDA model” or simply “our model” and not as the “GM-

LDA model”, without claiming in any way, though, that the basic idea of its structure

is ours. Finally, in this chapter we will use the notation introduced in section 2.4.1.
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5.1.1 Selecting a base model

To start with, the extended-LDA model is a generative process heavily based on the

classical LDA-model, as described in the background section 2.2.3. Remember that

LDA defines topics, i.e distributions over wordss. In our case, a document consists

of two parts: its label and the vector of visual features. Thus, we define two kinds

of such distributions: z for visual words and u for words (class labels). Our main

purpose is to model the joint probability of the set of words w, visterms v, the distri-

butions over them u and z respectively and the distribution over the latent factors θ,

i.e p(w,v,z,u,θ). This can be achieved by applying twice the traditional LDA algo-

rithm; once for visterms-image pairs and once for words-caption pairs, as described in

2.4.1. This is done with the order mentioned, because of the exchangeability issues also

mentioned in the background section. In that way, the first sub-part of the generative

process produces the distributions p(image topic∣image) and p(visterm∣image topic),

as a normal application of LDA only on this part of the data would produce , and

similarly the second sub-part produces the distributions p(caption topic∣caption) and

p(word∣caption topic).

In order to learn the connection that exists between captions and images in the

training set, we have to actually connect -in some way- the latent factors (topics) of

images and captions. The reason for this is a direct consequence of using traditional

LDA as a basis: the whole concept of topic models is to “transfer” the connection

of terms and documents into the latent space. Consequently, in our extended version

we have to transfer the connection of captions and images into this, new space. The

existing ways of doing that have already been described in section 2.4.2. We chose to

base our own version on the GM-LDA model for the reasons analyzed below.

Firstly, we had to reject the option of basing our model on the one proposed by

[Barnard et al., 2003] because it was mainly developed and tested for a task different

than object classification: it focuses on associating words with particular regions of

an image, after first segmenting it. Moreover, they do not compare their results with

other LDA-based models and their evaluation measures are difficult to compare with

other studies. In contrast, [Blei and Jordan, 2003] present a detailed and comparative

evaluation of their three models (also discussed briefly in section 2.4.2) and present

results in terms of perplexity versus latent factor number, which provides more insight

about the actual capabilities of the model in the image annotation task. In addition,

they test their models in the Corel dataset for the particular task of image annotation.
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Consequently, we found the idea to base our model on one of those mentioned

in [Blei and Jordan, 2003] a reasonable one. The authors compare their models and

reason about the results in detail. They prove that the Corr-LDA model is superior in

all tests. However, we had to reject this option too, for two reasons: First, the publica-

tion describes the pure statistical concepts behind this technique and does not provide

any information about how in step 2 the latent factor that generated the corresponding

region is found during training. We find, thus, that although the statistical basis is well

developed and easily understood, the implementation of this method is not so obvious.

Second, as its creators proved, the method is (slightly) prone to overfitting and further

techniques (such as empirical Bayes) are required for smoothing. More specifically,

the authors have to assume a Dirichlet distribution on the word multinomial parameters

β, i.e βi ∼ Dir(η,η, ...,η) and use a variational EM procedure to learn the posterior

distribution p(β∣D), where D represents the caption/image dataset. The need for all

this process makes the model less generic and increases the effort needed for param-

eter optimization. Finally, it is the less generic method and it would be difficult to

experiment with any variations of it. For this project we need a model which can be as

generic as possible and easily tuned. In that way, we can generalize our results easier

and, in addition, having less hyperparameters helps drawing more certain conclusions

about the tuning of the regular parameters (which are the same for all models and can

provide insights for the whole family of LDA-based models).

The need for smoothing is the reason why we rejected GM-Mixture as well. Ac-

cording to the results presented in [Blei and Jordan, 2003], GM-Mixture is much more

prone to overfitting in comparison to Corr-LDA, and the need for smoothing is a ma-

jor one. Without smoothing it performs worse that GM-LDA, and with smoothing it

performs better in terms of perplexity, but in terms of precision-recall for text-based

image retrieval (which is a task relevant to our own, i.e object categorization) it per-

forms almost as well as GM-LDA. For these reasons, we chose to base our model on

GM-LDA, although it has its own caveats as well (in fact, it is oversmoothed) but, at

least, it is simple, avoids overfitting and for relatively small values of the topic-number

parameter it has a reasonable performance.

GM-LDA gives, therefore, the solution to matching captions and images in the

latent space. As already mentioned in section 2.4.2, this is achieved by sampling a

random variable from a Dirichlet distribution and then generating both, image-regions

and words with this variable held fixed. As for the conditional distributions, a multi-

nomial one is a reasonable choice for p(w∣u,β), i.e the caption words conditioned on



50 Chapter 5. LDA based model

the sampled topic and the hyperparameter, because words are discrete. In addition,

a Gaussian distribution can be used for p(v∣z,µ,σ), since visterms v are continuous.

However, in order to demonstrate the close connection of LDA with its extended ver-

sion, we chose to transform the continuous visual words into the discrete space and

use a multinomial distribution for them too. In that way, given that LDA models

the co-occurence of terms and documents via topics, it is obvious how the triplet:

< word− topic−document > of LDA model becomes < caption− topic− image >

in the extended version, with caption and images being, in turn, represented as <

term− topic−document > triplets as well.

There are two ways to build a dataset with image data represented as discrete fea-

tures. Firstly, we can achieve that by creating a dataset with this property from the

very beginning, i.e during feature extraction. More specifically, as mentioned in sec-

tion 3.3, we can use an unnormalized count vector for the attribute-values. However,

in our project we followed a different approach, which also allows to benefit from the

information that normalization yields. Therefore, the following trick was used: the

whole feature-set is initially scanned in order to find the lowest value vmin from all

features. Then, in a second pass, each feature value v is replaced with the output of the

function:

f (v) =
⌈

v
vmin

⌉
(5.1)

In that way, the new smallest value in the dataset is 1 and the rest of the counts are

scaled as appropriate. Unfortunately, we loose some of the original information en-

closed in the continuous data but in a very small degree and this assumption is actually

unimportant.

5.1.2 Mixture and generative modeling

Our extended model is, basically, a mixture model in the same way that LDA is one

[Heinrich, 2004]. That is, data can be generated by one of different components which

form a convex combination, i.e a sum where each term is one of the components

weighted by a mixture proportion, and all proportions sum to unity. Indeed, in the

extended LDA model a term t (i.e either a caption word or a visual-word) is a mix-

ture of multinomial distributions p(t∣z) weighted by the topic probabilities p(z), since
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given a specific topic z̃ each term instance t̃ is likely to be generated with probability:

p(t̃) = ∑
z

p(t̃∣z̃)p(z̃) , ∑
z

p(z̃) = 1 (5.2)

Obviously, the term-topic distributions are the mixture components and the probabil-

ities p(z) are the mixture proportions that weight each component. [Heinrich, 2004]

refers to LDA as an admixture model because one step further is actually added in the

formulation (5.2), i.e topic instances z̃ are in fact conditioned on specific document

instances d̃ (because documents are, in turn, viewed as a mixture of various topics).

So, LDA is a mixture model whose components are, in turn, mixture models of dif-

ferent variables, a property that increases its flexibility. Consequently, we can think of

our extended LDA model as a structure which connects two different mixture models.

Being able to represent a method as a mixture model is convenient, because standard

methodologies exist for estimating their parameters (for example EM).

The extended LDA model can also be viewed as a generative model, i.e a model

which is able to generate data given some latent parameters by defining the joint dis-

tribution of data-variables and latent factors. Given this joint distribution if we have

observed variables we can actually reverse the process and perform inference by using

Bayes rule to form conditional probabilities or by integrating out the unknowns. For

example, as it will be described later in this chapter, our algorithm models the joint

distribution of observable and latent variables p(w,v,z,u,θ,φword,φvis∣α,β), so it is a

two-level generative process, as it merges the joint distributions p(w,u,θ,φword∣α,β)
and p(v,z,θ,φvis∣α,β), defined in the two major steps of the whole process, into a

single joint probability distribution. Intuitively, the interpretation of our generative

process is the following: each document (image/caption pair) is generated by choos-

ing a distribution over topics. Then, given this distribution, the algorithm generates

the specific topic for each visual word and based on this, visual words are generated.

The same process is followed for words, with the parameter that generated the topic

distribution held fixed.

Given all the above, we have the following algorithm (generative process) for our

extended LDA-based model:
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Algorithm

For each topic k:

φword
k ∼ Dir (β)

φvis
k ∼ Dir (β)

For each document d:

1) θ∼ Dir(α)

2) For each of the N visual words:

a) Sample topic zn ∼Mult(θ)

b) Sample visual word vn from p(vn∣zn,β) :

vn ∼Mult (φzm)

3) For each of the M caption words:

a)Sample topic um ∼Mult(θ)

b)Sample word wm from p(wm∣um,β) :

wm ∼Mult (φum)

Parameters

α,β given hyperparameters

M # of all caption words

N # of all visual words

K # of topics

D # of documents

(image-caption pairs)

In addition to the parameters stated above, we also have: VM and VN which are the

number of all different words and visual words respectively, i.e the words’ vocabulary

size and the visual-words’ vocabulary size.

The above process results in the following joint probability distribution of words,

visual words and latent variables:

p
(

w,v,z,u,θ,φword,φvis∣α,β
)

= p(θ∣α)p(φword∣β)p(φvis∣β)

⋅

(
N

∏
n=1

p(zn∣θ)p(vn∣zn,β)

)

⋅

(
M

∏
m=1

p(um∣θ)p(wm∣um,β)

)
(5.3)

The plate notation of the model is depicted in figure 5.1

This figure can be interpreted as follows: circles denote variables and arrows denote

the dependency between them. Shaded variables are the observed ones. Plates denote

iterations. For example, the bigger outer plate denotes an iteration for each of the D

documents, and in each loop all of the iterations defined by the two inner plates are
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Figure 5.1: The LDA model of images and captions.

executed.

5.1.3 Details and assumptions

We will explain in more detail the above algorithm, describing the usage and meaning

of each variable as well. Firstly, the hyperparameters α and β are chosen independently

and define the nature of the priors on the per-document topic distribution and the per-

topic term distribution respectively. In contrast to [Blei et al., 2003] where β is assumed

to be a K×V matrix (where V is the vocabulary size) and α is a K-dimensional vector,

we chose to follow the approach described in [Griffiths and Steyvers, 2004] where sym-

metric Dirichlet priors are used and α, β are treated as single values. This is convenient

for our extension because we can use the same β for both sampling steps. Choosing a

symmetric prior is also a typical approach ( [Steyvers and Griffiths, 2006]) and has to

do with our prior beliefs about the topic-document and word-topic distributions. More

specifically, we assume that all words are equally probable of being assigned to a topic

and all topics are equally probable of being assigned to a document. This is clearly not

the case or real datasets, because not all words are equally popular. However, if we

don’t want to embed any prior knowledge about their frequencies then the symmetric

priors is a reasonable choice. Also, the reason why the same β is used to generate both

φ’s is explained in section 5.3.2.

The parameters φ and θ define the distributions over terms and over topics respec-

tively. We use the notation φword and φvis to distinguish between the one over words

and the one over visual words. More specifically, φ is a matrix where φword
m,k = p(wm∣uk)

and φvis
n,k = p(vn∣zk) and θ is also a matrix where θd,k = p(topic = k∣document = d).

The process then generates each caption-image pair in two steps: firstly it generates

all N visual words and then it generates all M words for captions. Another assumption
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that we made in the design of the generative model is that N and M are known. This

does not affect the rest of the procedure because, as [Blei et al., 2003] notices for the

case of LDA, these variables are independent from the latent ones, which are respon-

sible for generating data. [Blei et al., 2003], thus, chooses a Poisson distribution for

the word-number of the LDA but argues that this is not critical and that other repre-

sentations could be used as well. Finally, the parts where terms are generated involve

sampling the topics and the terms from the appropriate Multinomial distributions. The

reason why the Dirichlet distributions were chosen for θ and φ to be drawn, is that

a Dirichlet is conjugate to the Multinomial, a property which can be used for more

convenient further computations, described later in this chapter.

5.2 Implementation

Our aim is to train a model which, given an unseen image v, is able to predict relevant

words. An image is represented as v, i.e the set of all of the visual words that form it.

In order to achieve prediction, we have to compute:

p(w = m∣v) = ∑
k

p(z = k∣v)p(w = m∣u = k) (5.4)

In other words, we marginalize out the latent variable from a product of factors which

the model is supposed to compute. Using the notation of φ and θ for term-topic and

topic-document distributions respectively (and using superscripts to denote if they cor-

respond to the word-caption or to the visterm-image pair), the factors of the summa-

tion can be written as θ̂vis
k and φword

k,m respectively, in order of appearance. Note that

we distinguish θvis from θword , because as it will be explained later in this chapter, our

algorithm uses separate representations for them which are finally tied in a way that

will be also described later. Note also that in this case θ has a single index k, because

we are now talking about a single testing document. Finally, the symbol “hat” is only

used in θ, in order to denote that this variable must be inferred from unseen data, while

for φ, we use the one which was estimated from the learning process. The connection

between the topics u and z that we provided (in the rest of the chapter we describe

how we imposed such a connection) allows us to use the same index -in this case k-,

whenever we want to retrieve this relation. Remember from section 5.1.1 that in our

case this connection is a very loose one, whereas for GM-Mixture, for example, it is so

strong (actually they use the exact same topic) that the model overfits the training data

in an unacceptable degree.
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5.2.1 Finding the appropriate distributions

The problem now is how to compute θ̂ and φ, or in general θ, φ, θ̂ and φ̂. There are

many approaches to this problem. Most of them, treat θ and φ as parameters that need

to be estimated. In contrast, [Griffiths and Steyvers, 2004] prove that they can be ac-

quired by calculating and then sampling from the appropriate posterior distributions

of latent variables given observed data. For example, for the case of simple LDA the

posterior p(z∣w,α,β) needs to be found. [Blei et al., 2003] claim that finding this distri-

bution is the most common goal for most practical applications as well. In our case, for

the extended LDA model we need to calculate the posterior distributions p(u∣w,α,β)

and p(z∣v,α,β) Normally these can be computed from the full joint distribution that

our model finds, but since these two parts are independent given α and β the com-

putation can be split and each distribution can be calculated independently. We will

describe below how the computation is done for the first of these and the exact same

steps can be followed for the second one.

In order to compute the probability distribution:

p(u∣w,α,β) =
p(w,u)

∑u p(w,u)
(5.5)

we can follow the steps described in [Heinrich, 2004]. Only the most important steps

will be mentioned here. Firstly, we can write that

p(w,u∣α,β) = p(w∣u,β)p(u∣α) (5.6)

because w is independent of α and u of β, and since the conditioning sets are different

each factor can be computed separately. Although the generative process is a way of

formulating the algorithm, in practice we have observed documents and, thus, observed

word counts on the associated topics (this is actually φ) and similarly for θ. We will

discuss later how φ and θ can be acquired by an iterative, EM-like process only by

using count variables. So, the factors of equation (5.6) can be thought as having φ and

θ respectively in the observed set.

We will now compute each of the factors of (5.6) separately. For the first, it can be

easily shown that it is equal to the observed word counts on the associated topics. That

is:

p(w∣u,φ) =
K

∏
k=1

VM

∏
t=1

φ
n(t)k
k,t (5.7)

where n(t)k is the number of times that term t has been observed with topic k. We can
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now integrate over φ and acquire p(w∣u,β). The integral can be computed as shown

in [Heinrich, 2004] or in [Griffiths and Steyvers, 2004] and the result is:

p(w∣u) =

(
Γ(VMβ)

Γ(β)VM

)K

⋅
K

∏
k=1

∏w Γ

(
n(w)k +β

)
Γ

(
∑w n(w)k +VMβ

) (5.8)

where Γ(⋅) is the standard Gamma function, VM is the number of distinct words (the

vocabulary for caption-words), K is the total number of topics and n(w)k is the number

of times word w was observed with topic k in the vector u. In terms of implementation,

this counter is a K×VM matrix.

For the second factor of (5.6), p(u∣θ), we can work in a similar way by noticing

that:

p(u∣θ) =
D

∏
d=1

K

∏
k=1

θ
n(k)d
d,k (5.9)

with D being the total number of documents and n(k)d denoting the number of times that

topic k has been observed with document d, i.e with any word of document d. In terms

of implementation, this counter is a D×K matrix. Again, we compute the integral over

θ and the result is proven to be: [Griffiths and Steyvers, 2004]

p(u) =

(
Γ(Kα)

Γ(α)K

)D

⋅
D

∏
d=1

∏k Γ

(
n(d)k +α

)
Γ

(
∑k n(d)k +Kα

) (5.10)

where n(d)k is the number of times that any word from document d was observed with

topic k.

The process described above (which can be found in more detail in [Heinrich,

2004] or [Griffiths and Steyvers, 2004]) results in obtaining a solution for p(w,u)
which can be replaced now in equation (5.5). Unfortunately the computation of the

resulting fraction is intractable using traditional algebraic methods. One way to find a

good approximate solution is to use Gibbs sampling as [Griffiths and Steyvers, 2004]

proposed. This publication, as well as [Heinrich, 2004] in more detail, describes how

the introduced formulation which involves counts can be used in order to find the up-
date equation from which topics are sampled using the Gibbs sampler. As [Griffiths

and Steyvers, 2004] showed, this equation is the following:

p(ui = k∣u−i,wi,di) ∝
n(wi)

k +β

∑w n(w)k +VMβ

⋅
n(di)

k +α

∑k n(di)
k +Kα

(5.11)
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The subscript -i indicates all instances but i. n(wi)
k and n(di)

k are the counters as described

in equations (5.8) and (5.10). Note that actually the counters n should be n−i to indicate

that the count does not include the current assignment of ui, however we omitted this

to keep the notation uncluttered. As [Steyvers and Griffiths, 2006] describes, the first

factor is basically the probability of word w under topic k whereas the second one is

the probability of topic k under document d. So, the equation can be written as:

p(ui = k∣u−i,wi,di) ∝ p(wi∣ui = k) ⋅ p(ui = k∣d = i) (5.12)

This interpretation is very useful when we attempt to connect the topics for words and

for visterms by holding fixed the paramter of the Multinomial from which they are

drawn. In the rest of the chapter we will present more details about this issue. For now,

returning to our initial notation, we can symbolize the first distribution of the RHS as

φword
k,i and the second one as θword

i,k , where “word” (or “vis”) is added as superscript in

order to make the distinction between counters for word-caption and for visterm-image

pairs.

Analyzing equation (5.12) reveals the factors influencing the way in which top-
ics are assigned to specific words. If many instances of a word wi existing in the

vocabulary have already been associated with a particular topic k, then p(wi∣ui = k) in

the RHS will be large and the quantity in LHS (the probability of assigning again topic

k to wi found in document di) will also become larger. Moreover, if the same topic

k has been frequently used in a particular document di, then p(ui = k∣d = i) will be

larger and the probability that any word in document di is assigned to topic k becomes

greater.

By following the exact same procedure, we can find the posterior distribution for

visterm - image pairs, i.e p(zi = k∣z−i,vi,di). All we have to do is to replace u with

z and w with v in the above equations. So, in terms of implementation we will also

have the distributions φvis and θvis. Hence, the corresponding equation, in the case of

visterms - image pairs, is:

p(zi = k∣z−i,vi,di) ∝
s(vi)

k +β

∑v s(v)k +VNβ

⋅
s(di)

k +α

∑k s(di)
k +Kα

(5.13)

Here, to avoid confusion we denote the count variables as s instead of n, to underline

that different count matrices are stored for each word-caption and visterm-image pairs.

What we have shown actually, is how to compute the update equations for Gibbs

sampler which can be used in order to find the final approximations of the posteriors.
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Gibbs sampling is a Markov Chain Monte Carlo (MCMC) procedure used in order

to produce random samples (in fact, pseudo-random as [Bishop, 2006] underlines, as

they have to pass some tests of “randomness”) from an unknown target distribution.

In general, all MCMC procedures first initialize the Markov chain to some state and

then the chain is run obtaining a new state in each iteration, until a stop criterion is

reached, in our case convergence (i.e the chain converges to the target distribution).

The transition between states is algorithm specific.

For Gibbs sampling we need an update equation which defines this. Suppose for

example that we want to approximate the distribution p(u), where u = (u1,u2, ...uk).

After initializing the chain, each Gibbs sampling iteration will update a single variable

ui assigning to it a new value sampled from the distribution of ui conditioned on the

values of the rest variables u j,∀ j ∕= i. So, in each step, ui is replaced by a value ûi

sampled from p(ui∣u−i). This procedure can be followed for every variable and for a

fixed number of iterations or until convergence. In our case that we have observed data

w (i.e a document), the sampling for a specific variable is done by the distribution of

equation (5.11) (and the corresponding distribution for visterm-image pairs, i.e (5.13)).

Finally, we also have to determine the way in which the parameter θ of the gener-

ative process described in section 5.1.2 is held fixed when generating topics for both,

words and visterms. Our approach is based on the intuitive explanation of the distri-

butions involved in (5.12). Since the second one is the the probability of topic k under

document d and since we assume that visual words are generated first and then caption-

words, we can use the probability learned first for both cases. More specifically, given

equations (5.11) and (5.13), we change the first one according to the second, and we

obtain the final update equation for caption words:

p(ui = k∣u−i,wi,di) ∝
n(wi)

k +β

∑w n(w)k +VMβ

⋅
s(di)

k +α

∑k s(di)
k +Kα

(5.14)

To sum up, equations (5.13) and (5.14) are the final update equations for Gibbs sampler

used to sample topics for visual and for caption words respectively.

5.2.2 Inference for previously unseen data

Although φ and θ are integrated out in the learning step, there is a way of obtaining

their distributions based on the same statistics of the dataset. As [Heinrich, 2004]

explains, this corresponds to finding the multinomial parameter sets that correspond

to the state of the Markov chain M = [w,z]. Notice that in this case the observed
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variables w come from the (previously) unseen data. However, we assume that unseen

data come from the same vocabulary as the training data, so the pair [w,z] is already

“learned”. [Griffiths and Steyvers, 2004] shows that the distributions of θ and φ for

unseen data, symbolized as θ̂ and φ̂, can be obtained as follows:

φ̂
word
k,i =

n(wi)
k +β

∑w n(w)k +VMβ

, θ̂
word
d,k =

n(di)
k +α

∑k n(di)
k +Kα

(5.15)

where the counters n(w) and n(d) are like ones defined in equations (5.11). The sim-

ilarity with (5.11) is obvious, but for this last case, the computation is done for new

instances of word w. This is feasible because we assume that unseen data are com-

posed from instances of words already included in our vocabulary. More specifically,

the first fraction is the predictive distribution of sampling a new instance of wi from

topic uk and the second fraction is the predictive distribution of sampling a new word

in di from topic ui.

Again, we note that in a similar way θ̂vis and φ̂vis can be obtained. To sum up, for

new data we have the estimates of table 5.1.

θ̂vis
d,k represents p(topic = k∣image = d)

θ̂word
d,k represents p(topic = k∣caption = d)

φ̂vis
k,v represents p(visual f eature = v∣topic = k)

φ̂word
k,w represents p(caption word = w∣topic = k)

Table 5.1: The distributions obtained be applying the extended LDA model for estimation.

We also underline that θ’s are created to be tightly related to each other and, so, this

agrees with our generative process. We can now return to our original problem of how

to emit the most probable caption-words given a set of visual words. The solution is

the equation (5.4) and as was demonstrated, the RHS can be computed by replacing the

first distribution with the θ̂vis
k obtained from doing inference on the unseen data v, and

the second one with the φword
k,m learned during training for the vocabulary of caption-

words. We then marginalize over all topics and get the emission probability for each

word in our vocabulary. This kind of output gives us some freedom as to how to use it.

One approach is to emit the l most probable words. Another idea is to emit word wi if

p(wi∣v)≥ t, with t being some threshold. However, for object categorization purposes

we can benefit from the fact that the output contains probabilities in order to apply

measures such as recall and precision, as described in a later chapter.
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5.2.3 Notes on the programming code

For the implementation of Gibbs sampler for LDA, we used (and extended) the package

GibbsLDA++ 1, developed for the purposes of [Phan et al., 2008]. The provided code

is an implementation of the simple LDA model and uses Gibbs sampling for parameter

estimation and inference, taking advantage of the theoretical results already described

in this chapter. The fact that equations in the form of (5.13) are used for the Gibbs

sampling, where the only information required are counts of the number of times a

word is observed with a topic and of the number of times a topic is seen in a document,

makes the implementation very efficient.

In more detail, the code requires the following input arguments:

• The hyperparameter alpha (α)

• The hyperparameter beta (β)

• The total number of iterations to run the Markov Chain

• The total number of topics

• The input file represented as a bag-of-words. The program assumes that each

line is a document represented as an arbitrary number of words, separated by

white characters.

For each corpus (which is represented as a Java class), the program defines some

internal fields: Firstly, the distributions φ and θ are internally represented as a matrix

“phi” of dimensions K×VM, and a matrix “theta” of dimensions D×K respectively.

In order for these to be computed, as we already described, some counters are needed.

These (i.e n(w) and n(d) from equation (5.11)) are also represented as matrices NW and

ND. The chain is represented as a vector Z for each document in the corpus, where

Zd,i = k means that the i-th word of document d has been assigned topic k.

Given the above, the program firstly initializes the Markov chain Z with random

topics. Then, for each word, the count matrices NW and ND are firstly decremented

by one for index k, where k is the topic which is currently assigned to them in vector

Z. Then, equation (5.11) is used in order to sample a new topic ḱ according to the

counter’s values and, finally, the count matrices are incremented by one for index ḱ.

A full iteration involves the above procedure for all of the VM vocabulary’s words.

Obviously, in each iteration the new topic is selected based on the current values of the

count matrices which, in turn, are incremented based on the newly selected topic. The

concept behind this procedure is similar to the EM approach.
1available at: http://gibbslda.sourceforge.net/
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The outputs of the program are the following:

For training data (estimation):

• A file which contains φ, the word-topic distributions, i.e p(word∣topic)

• A file which contains the topic-document distributions θ, i.e p(topic∣document)

• A file containing the final topic assignments for each word in the vocabulary.

• A file which contains the most T likely words of each topic.

For inference on unseen data similar outputs are obtained but are, of course, com-

puted on the unseen data. It is worth mentioning that the output containing the most

likely words by topic can be useful for understanding the nature of the corpus.

In this project, we had to modify the code described above for our own task which

involves working with collections of words (captions) as well as visual words (im-

ages). The modifications made reflect exactly the ones described in the theoretical part

of this chapter. More specifically, we model captions and images separately and we

treat both as separate corpora. Hence, the process described above for a single corpus

was replicated twice. The connection between the topics for images and for captions

was provided exactly as demonstrated in section 5.2.1. Moreover, some code had to be

added for calculating the probabilities of the word emissions (equation (5.4)) as well

as for calculating some evaluation measures, as will be explained in the next chap-

ter. Finally, the program outputs were augmented to include the information for both

corpora, the probabilities of each word to be emitted given a particular image and the

evaluation measures.

5.3 Parameters of the model

Our program for implementing the extended LDA-based model, needs the following

parameters to be defined (apart from the arguments concerning functionality issues):

1. The hyperparameter alpha (α)

2. The hyperparameter beta (β)

3. The number of topics K

4. The number of Gibbs sampling iterations L

5. The threshold t used for word-emission (for each unseen image, words with

probability larger than t will be reported as being associated to it)
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The first three are the actual model parameters, as they also appear in the generative

process defined in section 5.1.2. The rest can be considered as “external” parameters.

L regards our specific implementation which uses Gibbs sampling. Moreover, the

threshold t can be omitted if the full file containing the probabilities for each word is

the desired type of output. There are various ways of finding the optimal parameters

for a model. However, before analyzing this issue, it is vital to understand the role and

importance of each of these parameters independently.

5.3.1 The role of each parameter

Larger values for hyperparameters α and β means larger smoothing on the multino-

mial parameters θ and φ respectively. In turn, this results in less certain assignments

of topics to documents and of terms to topics respectively. In detail, since θ represents

p(topic∣document) and φ represents p(word∣topic), the probability masses of these

distributions will be more equally distributed over each specific topic-document and

word-topic pair and the corresponding matrices will be less sparse. This effect can

be intuitively explained as imposing a bias such that the model tends to assign more

terms to each topic, leading in topics which contain terms less “similar” to each other.

Obviously the effect that hyperparameters have on the model is heavily dependent on

the number of topics. For example, having a small K would (theoretically) require

some smoothing (larger values for the hyperparameters) because if many terms have to

be distributed among too few topics it is reasonable that the “similarity” criterion for

assigning two terms to the same topic should be less strict. Of course, this explanation

is intuitive and does not mean that a the topic number K and the hyperparameters can

be modeled easily as a function of each other. On the contrary, this relation is also

dependent on the specific nature of the dataset, as different kinds of topics are learned

for different kinds of documents.

The topic number K is also critical for the model’s performance. It is not obvious

how to find an optimal K, as it depends on the dataset’s nature, something that cannot

be quantified. For example, a corpus of scientific publications is expected to need a

smaller K than a corpus of a newspaper archive. In our case where we perform object

categorization with our extended LDA model, a large K will result in sparser matrices

for φ and θ, which means that it would be difficult for co-occurrences of class-labels

with visual words to be captured. On the other hand, having too few topics will make

the algorithm less discriminative, as it will have to assign less similar terms to the same
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topic.

5.3.2 Parameter Estimation

5.3.2.1 Experimental Procedure

The analysis of each parameter’s role suggests that a reasonable approach to estimate
the model is by searching for the optimal α and β in combination with K. This can

be achieved in two ways: firstly, by choosing fixed α and β and learn the optimal K

from the dataset. Hyperparameters can be set to specific values by relying on previ-

ous research or heuristically. For example, [Griffiths and Steyvers, 2004] showed that

α = 50/K and β = 0.01 is proven heuristically to be a good combination in general.

Secondly, one can try many different combinations of α, β and K together, so that hy-

perparameters can also be learned from the data. There is a trade-off though, because

in that case it is not the optimal K that is learned, but just the best from the ones tried.

These methods are explained in detail separately in the next two paragraphs.

The first method is implemented using Bayesian methods to learn K from data, a

process followed in [Griffiths and Steyvers, 2004]. Such standard methods are able

to select the model M (which is basically represented as a set of parameters) with

the highest posterior p(M∣Data) instead of basing the selection on the likelihood. Of

course, this requires finding the likelihood p(Data∣M) by integrating out over all pos-

sible parameters. In our case, for example, for the part of the model concerning words

we would have to compute p(w∣K), if α and β are given. The integral is intractable

and sampling techniques (taking advantage of the already computed formula of equa-

tion (5.8)) can be used. However, this approach requires α and β to be given and so,

they must be found heuristically. Of course one could repeat the process for different

combinations of α and β, but this would be more time consuming.

The second method, is more interesting because it involves inferring from data not

only K, but also α and β. It is generally true that different kinds of corpora need differ-

ent calibrations regarding topic issues. For example, a dataset of images (represented

as bag of visual words) depicting a limited number of objects without background is

very different in nature than a dataset of natural scene images. Thus, tuning the model

in a more data-driven way is desirable. Basing the hyperparameter optimization on

data is also useful because since α and β which are found to be good for a specific

dataset, they can provide useful insight into its properties in the latent space. For ex-

ample, the value of α is a measure of similarity between different documents in the
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topic space, and the value for β measures the size of the sets composed of co-occurring

terms in the documents [Heinrich, 2004].

Although using Bayesian parameter estimation would potentially result in better

parameters to be found, we would have to use fixed values for α and β, as we would not

be able to repeat the process many times for different hyperparameters, due to limited

computational resources and lack of time. However, we considered that it is vital to

learn the hyperparameters in a more data-driven way. The project’s results are tested in

four different feature sets (table 3.1) and we believe that it is interesting to estimate the

hyperparameters from the data and investigate how these vary for different feature sets

of the same database. So, instead of choosing the optimal K for given hyperparameters,

we preferred to experiment with different combinations of hyperparameters and K.

This is a trade-off: in order to estimate the hyperparameters from data, we have to try

less values for K. However, in order to search for as many combinations as possible

(given our time available and computational resources), we use the Gibbs sampling

iterations parameter L and our datasets in a clever way, as it will be described shortly.

Also, some ad-hoc tests made with a very small number of Gibbs sampling iter-

ations revealed that there is not significant change in the performance for α values

different than 50/K, a value found heuristically from [Griffiths and Steyvers, 2004].

This fact as well as that this heuristic rule is a function of K are the reasons why we

used the setting α = 50/K for all of our experiments, although it may not be the opti-

mal choice. So, β and K are the only parameters to be estimated. [Philbin et al., 2008]

follows an approach similar to ours: they find α, β and K as a combination by us-

ing non-Bayesian methods, using heuristic methods. Consequently, our experimental

set-up is sketched as follows:

1. Come up with a set of parameters β and K to be tested as combinations. We

denote with β⃗ and K⃗ the corresponding sets and explain shortly how they are

chosen.

2. For every different combination of topic number k ∈ K⃗ and β ∈ β⃗:

(a) Apply the model with parameters k and β on the validation set of one of the

four available feature-sets. We chose dSIFT500 for this purpose, because

from informal experiments was proved to be the best dataset.

3. Create a matrix associating each k ∈ K⃗ with its best β̃k found in step 2a.

4. For every combination of feature-set and k ∈ K⃗:
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(a) Apply the model with parameters k and β̃k on the corresponding validation

sets

5. Create a matrix associating each feature-set f with its corresponding best k̃ f (and

consequently with its corresponding best β), based on the results of step 4a.

6. For each feature-set f

(a) Apply the model with parameters k̃ f and β̃k on the test set created for f and

get the final results.

Note that different training, validation and test sets exist for each feature-set. Also,

the evaluation of the models was done using the Mean Average Precision (MAP) mea-

sure described in section 6.1 and more specifically in equations (6.5) and (6.6). How-

ever, the details are not critical at this point, and it is enough to keep in mind that this

measure summarizes the performance over all classes.

Breaking the process in subtasks allows to vary the number of Gibbs sampling
iterations dependently on the significance of each phase. This is necessary in order

to gain in computational time (note that for larger K -and of course for larger iteration

number L- this time increases) because the models are trained and evaluated 24 times

for step 2 (4 different values for β × 6 different values for K) and 24 times for step

4 (4 different feature-sets × 6 different values for K). This results in 48 × 2 × L

Gibbs sampling iterations (as one series of iterations is needed for training and one

for inference). For example, in step 2 of the process described above we use L =

15 iterations for the training phase and the same for the inference one. For step 4,

where the topic-number is selected (and is a more important parameter), we increase

the number of iterations to 20. The L parameter is small for phases 2 and 4 because

we are only interested in comparing the results, in contrast to the testing phase where

we actually want to achieve as good results as possible.

Moreover, these numbers are selected based on some of our ad-hoc experiments,

which define the “burnin” period for Gibbs sampler to be less than 15 for the particular

datasets that we have. With the term “burnin” we refer to the initial period where the

samples obtained are poor estimates of the target distribution. However, for the testing

phase of step 6, we want to define a number of iterations as close to convergence

as possible. Again, based on some of our ad-hoc experiments we found that for our

particular datasets, increasing the number of iterations to more than 150 for training

and to more than 200 for inference does not yield significant change. However, as our
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final results are very important for drawing conclusions, we selected 500 training and

1100 inference iterations in order to be somehow far from this “safety” limit.

Finally, the procedure described above needs the testing set of β’s (⃗β) as well as

the testing set of k’s (K⃗) to be defined. In our project we formed these sets based

on existing publications for similar tasks, and then we further reduced them based on

the results of more ad-hoc experiments (that is, with a small L). More specifically,

β⃗ was formed by selecting some values around 0.01 which is the optimal value found

by [Griffiths and Steyvers, 2004]. We noticed that we had better performance for larger

values, so our final set contains:

β̃ = {0.04,0.07,0.1,0.16} (5.16)

Selecting the set of candidate topic numbers K is a slightly more complicated issue.

We had to take into account the theoretical considerations for the role of this parameter

(subsection 5.3.1), the findings from published results and the trade-off between a big

K and a smaller number of Gibbs sampling iterations L, because more topics add more

delay to each iteration. Finally, as [Blei and Jordan, 2003] proved, GM-LDA which

forms the basis of our model tends to overfit training data for large K, while for smaller

values gives reasonable results. This can be explained as follows: the fact that GM-

LDA provides such a loose connection between word/topic and visterm/topic pairs,

increases the probability that a word is assigned to topics which did not contribute at

all into generating the corresponding image. For a large K, this probability increases.

To start with, [Blei and Jordan, 2003] evaluate how well their image annotation

models fit the data by measuring negative log probability and perplexity versus the

topic number K. Better models have lower negative log probability, meaning that they

assign higher likelihood to the test set. As for perplexity, lower numbers are again

more desirable. As can be seen in figure 5.2, values of K less than 50 yield better

results.

For perplexity, the conclusion is the same i.e smaller values for K are better. For

this reason, we tested different K in the range of [1...100]. More specifically, the set of

different K’s to be tested is:

K̃ = {5,15,20,25,35,100} (5.17)

Finally, during the experiments for selecting K, if the evaluation output for two differ-

ent numbers of topic K1 and K2, with K1 ≤ K2 were very similar, we selected K1, i.e

we imposed a slight bias towards smaller K for the reasons stated above as well as for

computational efficiecny purposes.
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Figure 5.2: The per-image average negative log probability for the validation set as a function

of the total number of topics K. Obviously, smaller K is better.source: [Blei and Jordan, 2003]

5.3.2.2 Assumptions

This experimental procedure involves some assumptions. Firstly, for discovering the

optimal β̃k for each topic k, we used only one feature-set, the dSIFT500. Since all

feature-sets come from the same database, and given that k and β are associated in a

way that the nature of the database defines, we assumed that the same best β’s would

be discovered for the corresponding topics for any feature-set. Some informal experi-

ments confirm this.

Moreover, (as it is obvious from figure 5.1) we use the same β for both parts of

the generative process: the one generating captions and the one generating images.

The reason for this assumption is that, following the theoretical discussion of section

5.3.1, β is mainly related to K and to the dataset’s nature. Since K is fixed for word-

caption and visterm-image pairs, we just have to consider the datasets’ nature, which

we assume that is similar for both cases: captions and images contain the same number

of instances; moreover, we assume that captions and images are somehow two different

representations of the same document, meaning that we treat images as collections of

depicted objects and anything else is just noise, while captions are a pure representation

of the image, containing only the class-labels of the corresponding objects. Of course,

in contrast to the caption data, multiple topics might be extracted from a visual object

which suggests that possibly different β values should be used for each dataset part.
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For example, for a person image, one topic might concern eyes’ characteristics, one

skin’s texture etc. However, topics are first generated for images and then (providing

some explicit connection) for captions. In any case, allowing the algorithm to use

different β’s might be an interesting extension to be further studied.

5.3.2.3 Optimal parameters selected

The results of the experimental procedure described in the previous section, are sum-

marized in tables 5.2 and 5.3. Values in square brackets indicate that for each number

in the set the performance was almost identical.

Topics’ β values ordered
number according to best MAP

5 0.16 0.04 0.10 0.07

15 0.04 0.10 0.16 0.07

20 0.07 0.16 0.04 0.10

25 0.16 0.07 0.10 0.04

35 0.10 0.16 0.04 0.07

100 0.10 0.04 0.07 0.16
Table 5.2: β values for each top-
ics’ number K, sorted starting from
the one which results in best perfor-
mance.

Dataset id The value of K ordered

dSIFT500 [35, 100], 15, 20, 25, 5

cSIFT300 [100, 15], 25, 35, 20, 5

dSIFT300 15, 25, 100, [5, 35, 20]

hSIFT300 [15, 100], 25, 35, 20, 5
Table 5.3: The topics’ number pa-
rameter K for each dataset, sorted
starting from the one which results in
best performance.

We can observe some similarities between the ordered β vectors for K’s which

are close. For example, for K=5 and K=15, β = 0.07 is the worst and β = 0.04 is

the best for K=15 and the second best for K=5. For K=20 and K=25, different values

dominate: β = 0.07 and β = 0.16. For the large K’s tried, i.e K=35 and K=100, β = 0.1

is the best in both cases. However, this connection is not strong enough to allow us

find some underlying rule, because we can also see that, for example, the β-vectors

for K=15 and K=20 are very different, although the number of topics only differs by

5. What is more, the relative values of K’s do not seem to imply some connection

with the relative values of β’s. For example, when K is only 5, the best β found is

0.16, i.e the largest of all, whereas for K=15 the best β is found to be 0.04, i.e the

smallest of all. Thus, we confirm that the optimal value for hyperparameter β is indeed

connected with K. Nevertheless, a single rule for selecting the best β given K cannot

be learned. Consequently, conducting many experiments in order to define the optimal
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β is a process which cannot be avoided.

As for the results of table 5.3, they give rise to two conclusions: Firstly, we can see

that K depends mostly on the nature of the data rather than on the particular feature-

set, as K=5 and K=20 are the worst choices in all cases. Moreover, the fact that there

are a lot of “ties”, i.e similar performances (indicated with square brackets around the

corresponding K’s) indicates that there may exist almost equivalent combinations of

(β,K) pairs, even for very different K’s. This underlines the need for correctly choosing

the hyperparameters.





Chapter 6

Evaluation

In chapters 4 and 5 the SVM-based model and the LDA-based one were described.

In this chapter, we demonstrate the experimental procedure which was followed in

order to compare the performance of each model on the same object categorization

task, using our four datasets that were created as explained in chapter 3. We also

conduct a comparative analysis on the results, something that will form the basis of

the conclusions drawn from this project. The comparison concerns not only the rela-

tive performance of the two models, which is the main objective, but also the relative

quality of the created datasets.

Firstly we describe the evaluation measures used in order to quantify the perfor-

mance of each model to each dataset. This is done while explaining the experimental

procedure followed in order to acquire the results. In the second part, the results are

presented an analyzed.

6.1 Evaluation measures and experimental procedure

The object categorization task is applied on the already described PASCAL dataset

which contains images depicting objects of 19 different classes. As explained in sec-

tion 5.3 for the LDA-based model and in 4.2.2 for the SVM-based one, their outputs

are actually probability vectors for each document, where element i is the probabil-

ity that class i is true for the particular document. In order to use these probability

estimates we need to impose a threshold t and select only classes whose probability

is over t and then count the correct outputs. A more reliable approach, though, is to

perform evaluation for each threshold in the interval [0,1] and summarize as necessary.

After obtaining evaluation results for each class and for all thresholds, a single number

71
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which summarizes the performance over all classes can be computed. The evaluation

results for each class separately as well as the summaries for every class are useful for

analysis, if correctly presented. Finally, since we have created 4 different feature sets

for the same dataset (table 3.1) we can repeat the above process for each one of these.

The way in which the procedure explained above can be implemented is depicted

in figure 6.1 and is explained below.

Figure 6.1: The stages followed in order to carry out the evaluation procedure for a multi-class
classification task.

Given a specific model (classifier) and dataset, a confusion matrix, also known

as “contingency table” (containing counts for True Positives: TP, True Negatives:

TN, False Positives: FP and False Negatives: FN) is firstly created for each threshold

in the interval [0,1]. Since this interval is a continuous one, we chose to perform the

computations by beginning at zero and reaching unity with step 0.01, i.e we discretized

the interval in 100 parts. For each threshold t and based on the confusion matrix, one

can compute the following measures (where P = T P+FN, N = T N +FP):

Accuracy =
T P+T N

P+N
(6.1)

Recall =
T P
P

(6.2)

Precision =
T P

T P+FP
(6.3)

F−measure = 2 ⋅ Recall ⋅Precision
Recall +Precision

(6.4)

Accuracy is not a reliable measure, especially for unbalanced datasets like ours, be-
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cause it simply constitutes the proportion of correct decisions and does not distinguish

if a correct decision is a TP or a TN. For example, if a dummy classifier learns nothing

about a class whose total labels represent only the 5% of the dataset and always pre-

dicts false for it, it will have accuracy equal to 95%. As can be seen from figure 3.2

there are many classes with small proportions.

High recall means that most of the documents which belong to class C are cor-

rectly identified and that is why it is also referred to as “sensitivity” or “true positives

rate”. High precision means that most of the documents which are assigned class C

are indeed in this category and that is why it is also referred to as “Positive predictive

value”. However, the first measure does not “penalize” the large number of irrelevant

documents which were also identified as class C, and the second does not penalize the

large number of documents which are actually in class C but not identified as belong-

ing to it. For this reason, recall and precision are very complementary to each other

in analyses and are popular measures in information retrieval when studied together.

The harmonic mean of recall and precision, namely F-measure can be used in order

to find a single number which represents the quality in terms of recall and precision

simultaneously.

For a fixed threshold t, obviously there is a trade-off between precision and recall,

because for a t close to 1, TP and, hence, Recall will be close to zero but FP appearing

in the denominator of precision will also be close to 0, meaning that precision will be

larger. Thus, instead of reporting these two measures for every possible threshold, it

is more useful to plot precision-recall (P-R) curves (as an example, see figure 6.2)

because both, high precision and recall are desired. A good classification score would

be represented as a P-R curve which is close to the upper and right corner of the plot.

The summary provided by such a plot can also be quantified in a single number, namely

Average Precision (AP), defined as the average of precision over the entire range of

recall. It is a measure very popular in information retrieval as well. More specifically,

if precision is expressed as a function of recall, i.e Prec(r), then:

AP =
∫ 1

0
Prec(r)dr (6.5)

If precision and recall are given as vectors “prec” and “r” respectively, a practical way

to find the average precision is with the following code in MATLAB: (provided with

the development kit of the PASCAL challange [Everingham et al., 2008])

ap=0;

for t=0:0.1:1
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p=max(prec(r>=t));

if isempty(p)

p=0;

end

ap=ap+p/11;

end

So far we have described how to evaluate each class separately. A single number

that characterizes the average score of a model over threshold for every class is needed,

especially if there are many classes or if we want to compare many models. There are

two ways of averaging this kind of results: Macro averaging and Micro averaging.

Assume that we calculate some of the measures mentioned above (for example AP) for

each of the C different classes. We use the notation mi to refer to the value of one of the

measures when applied to class ci, i = 1...C. The macro-average measure is calculated

as:

MacroAverageMeasure =
1
C

C

∑
i=1

mi (6.6)

that is, it simply finds the mean weighting equally the score obtained for each class.

For the specific case that macro-averaging is applied to the AP measure, the resulting

number corresponds to Mean Average Precision (MAP).

So, for macro-averaging, the local score is derived based on a different confusion

matrix for each class and then the mean is found. In contrast, in micro-averaging all

confusion matrices are merged into a single table, where the values of each corre-

sponding cell (TP, FP, TN, FN) of the local tables are summed to the new one. Then,

the evaluation measure is computed in the same manner that is calculated for local

measures, based on the new confusion matrix. The differences between these two av-

eraging approaches become obvious if we consider that for more frequent classes the

corresponding local confusion matrices will contain larger values. So, since macro-

average takes into account a single number extracted from each of the C confusion

matrices, it is said to be “category-pivoted”, as it gives the same importance to each

class without considering their frequency. On the other hand, the larger numbers of

frequent classes will contribute more to the sums of the new confusion matrix created

for micro-averaging and that’s why this approach is said to to “instance-pivoted”, i.e it

gives the same importance to each instance. Obviously, the second method mentioned

reflects more the score obtained from the dominant classes [Berka et al., 2009].

Although both kinds of averages are computed from our evaluation code, the ques-
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tion as to which is more appropriate to be used in comparisons remains. Answering

the question “are all classes of the same importance?” will determine the method to

be used. An argument in favor of using micro-averaging is that giving a benefit to fre-

quent classes is desirable for real-world applications where the same model is trained

once and used many times to classify unseen instances. This is because if for example

a classifier is better at recognizing the frequent category “Person” then it is expected to

succeed in most of the tasks (since most of the unseen instances are also expected to be

in the category “Person”). However, we believe that for evaluation purposes all classes

should be given the same importance, otherwise one could perform feature selection in

order to find the optimal classifier for the most dominant class and achieve high micro-

averaging results although the model might be useless for the rest of the categories.

Moreover, macro-averaging “penalizes” the tendency of classifiers to assign too high

probabilities to frequent classes. Thus, macro-averaging will be used in order to do

model selection and comparison.

Another measure for summarizing the results over all classes is Median Average
Precision. It is calculated by ordering the results for each class and returning the

median or the mean of the two medians, if the class number is an even number, like in

our case. We calculate it for the graph of figure 6.9 but the rest of our comparisons are

based on Mean AP.

Having described the evaluation measures used, we can now summarize the exper-

imental procedure followed, commenting about the implementation issues at the same

time:

1. The LDA-based and the SVM models are trained with the optimal parameters

(generally different for each feature-set) found during parameter estimation on

the training set of each of the four feature-sets.

2. The models are applied to the four different, unseen test-sets obtaining precision

and recall for each threshold in [0,1] with step 0.01, and AP is then calculated.

We also compare:

(a) AP by class

(b) Samples of Precision-Recall curves

(c) The best F-measures found for any threshold, potentially different for each

model (although there is no way of knowing a priori the optimal threshold

for each model for the specific dataset)

(d) A plot of F-measure versus threshold for all classes (obtained from apply-
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ing the models on the validation sets)

(e) Accuracy and F-measure for each class for the best threshold found in step

2d.

3. We compare the Mean Average Precision for each test-set (Macro average).

6.2 Results

In this section we will present the results obtained from the experiments, as described

in the previous section. Since there are many different combinations of evaluation

measures, models and feature sets, we have to present only a representative subset.

The whole set of graphs that follow, encapsulates as much information as possible.

As we will demonstrate, the best results for both models were obtained for the dataset

dSIFT500, and that is why for most of the detailed comparisons are for this dataset,

although graphs for more high-level comparison taking into account all of our datasets

are also presented, so that we can demonstrate how the best dataset was found. Many

conclusions can be drawn from the final comparison of MAP measures. However, the

more detailed graphs with per-class scores are necessary not only for drawing addi-

tional conclusions but also for backing up the ones made from the table of MAP. Some

more graphs can be found in the appendix.

Note that all of the evaluation results presented here are obtained from applying

the model to the test sets, except the F-measure vs Threshold curve in figure 6.7 for

which the validation set was used because the optimal threshold can be considered as

a parameter of the models and must be learned in the validation phase.

It is worth keeping in mind that for every graph, even for subfigures under the same

caption, the maximum value of Y-axis usually varies in order to present with greater

detail only the area where the curves or charts lie. Finally, it is vital to repeat that for

the evaluation made by the PASCAL organizers (for example, figures 6.2(d) and 6.9)

the original test database was used which contained more images. However, as already

mentioned in section 3.1, the gold-standard labels for this database is not distributed

and so we had to create our own test database by splitting the validation set. Thus,

we avoid performing extended comparisons with these results and we focus mainly on

comparing our two models. On the contrary, these figures can still can be used as a

simple reference and as a means of acquiring a global understanding of the results.
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6.2.1 Summarizing for all thresholds

We present a sample of the precision - recall curves obtained. They correspond to

classes “Person”, “Car” and “Bottle” (it is worth comparing these classes’ priors,

shown in figure 3.2). Multiple observations can be made based on these figures. Firstly,

(a) (b)

(c) (d)

Figure 6.2: Sample Precision-Recall curves for classes ’Person’, (a), ’Car’ (c) and ’Bottle’ (b)
for the dataset dSIFT500 as well as the performance for class ’Car’ for the PASCAL challenge
participants (b). Source of (b): [Everingham et al., 2008]

by comparing with the prior of each class label in figure 3.2, we see that for both mod-

els the performance gets better as this prior becomes larger. This is a general

phenomenon as it can be observed in all of the subsequent “per-class” graphs. Further-

more, it is evident how the SVM-model outperforms the LDA-based one in all cases.

In fact, the greater the label-prior, the larger the gap in performance between SVM and
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the LDA-based model. As for figure 6.2(d), one can compare with 6.9 and realize that

the participants’ algorithms can be grouped according to their achieved score into two

categories, with a gap in performance between them. In the precision recall curves pre-

sented here, our algorithms are comparable with the group achieving the lower score,

whereas for MAP, as it will be discussed next, the SVM’s performance is somewhere

in the middle whereas the LDA-based model’s is in the lower bounds.

Next, the Average Precision (AP) is presented for each class separately. As we

consider it to be the most important measure, we have included the corresponding

graphs for all feature sets. Indeed, such a presentation reveals that there are certain

classes for which the LDA-based model performs better.

(a) dSIFT500 (b) cSIFT300

(c) dSIFT300 (d) hSIFT300

Figure 6.3: AP by class for dataset dSIFT500 (a), cSIFT300 (b), dSIFT300 (d), and hSIFT300
(c).
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By comparing with the figure of priors 3.2 one can confirm that such classes are

those with a low prior, i.e “dining table” and “potted plant”. It seems that, although
it is affected by class imbalances (as will be shown shortly), the LDA-based model
still has a reasonable discriminative power.

In order to compare the AP by class from a more general viewpoint, we summarize

in two ways: Figure 6.4 summarizes the information shown in figure 6.3 by focusing

on the different classes, i.e for each class the bar represents the mean of AP for all

datasets. This is found by simply adding the four scores obtained and dividing with

their count. On the other hand, figure 6.5 focuses on the differences between the score

obtained for each class by the two kinds of models, for each dataset.

Figure 6.4: The AP by class averaged over all datasets.

Figure 6.4 provides a useful insight into various issues: Firstly, it can be seen

that the LDA-based model is better for classes for which SVM is also better. For

example, the best performance is recorded for classes “Aeroplane” and “Person” for

both models. Secondly, large priors for a class label (figure 3.2) are connected to good

performance, as has been commented for other graphs as well.

Figure 6.5, on the other hand, shows which of the models performed better in the

particular dataset and class as well as how much better. This is done by setting the vari-

able on the Y-axis to be Y =AP(SV M)c−AP(LDA)c, where AP(SV M)c and AP(LDA)c

is the AP obtained from SVM and for LDA respectively for class c. This bar chart is
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Figure 6.5: The difference between SVM and LDA-based model in AP by class.Positive values

mean that SVM performed better.

useful for drawing conclusions either by examining the absolute values on the Y-axis

or by examining the “disagreement” of the four bars above each class. For example,

for the first kind of comparison one can see that dSIFT300 tends to take slightly larger

values in the Y-axis, although there is not much difference (this is confirmed in ta-

ble 6.1 as well). As for the second kind of comparison, one can see that for classes

“Aeroplane” and “Person”, almost the same difference value is computed for all four

datasets. Unsurprisingly, these classes are also the ones where better performance is

achieved. Apparently, this is because the classifiers learn better in these cases, either

because they have a lot of samples to learn from (e.g “Person” class) or because the

classes are easily being discriminated. For example, the “Aeroplane” class is easily

distinguishable, because most of the pictures depicting aeroplanes contain nothing but

the object itself and the sky, or a simple uncluttered background 1.

6.2.2 Using a fixed threshold

However, as already mentioned, in practical applications the models are required to

be accompanied not only by a set of parameters but also by a fixed threshold. If the

classification probability output for some class is larger than the threshold, then the

class-label is emitted as true.

1Some example aeroplane images can be found in:
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/examples/index.html#aeroplane
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Figure 6.6 displays for every class and for every dataset the differences in the value

of the best F-measure achieved for any threshold (potentially different for each model

and dataset). A graph like this can help us understand the potential capabilities of the

models in real applications, i.e their performance if the optimal threshold is selected.

Of course, as it will be discussed shortly, it is not easy to find this threshold.

Figure 6.6: The difference between SVM and LDA-based model in the best F-measure obtained

for any threshold, by class. Positive values mean that SVM performed better.

It is worth noting that precision-recall plots like 6.2, suggest that recall is the di-

mension of greatest variance and is allowed to reach greater values than precision.

Thus, larger values of F-measure (calculated by equation (6.4)) can usually be calcu-

lated for larger values of recall. As can be seen from figure 6.2(a), the curve for the

LDA-based model is above the one of SVM for large values of recall. Consequently,

since the best F-measure is more likely to be found around this area, the value for the

LDA-based model may be very close of even greater than the one for SVM. Figure 6.6

confirms this.

However, choosing a good threshold is a difficult task, because on the one hand

the observations made for thresholds are not easily generalized and on the other hand

it depends on the specific goals to be achieved with the object categorization task.

In other words, it depends on how much we want to penalize False Alarms (False

Positive rate) and misses (False Negative rate). Setting a high threshold will return

more irrelevant class-labels along with the true ones, and so false alarms will be more

but it is more likely for all of the true labels to be predicted correctly, so misses will be

less.
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In our case the task is to achieve as high performance as possible without consid-

ering whether this is achieved with a high number of misses or false alarms. Conse-

quently, a simple way to find a good threshold would be to measure the performance on

the validation set. This approach is proven to be a reasonable one, because the optimal

threshold for the test set was also calculated and it was found to be about in the same

point. Figure 6.7 is created by fixing the threshold to every discrete value in [0,1] with

step 0.01, and calculating the macro-average of F-measures for each class.

(a) SVM (b) LDA-based

Figure 6.7: The Macro-average of F-measures for the validation set of dataset dSIFT500,
plotted with threshold, for the SVM (a), and the LDA-based models (b). Obviously, threshold
0.09 is a good one for both models (for the test set).

As can be seen, threshold 0.09 is a good one for both models, so we decided to use

this for the graphs of figure 6.8. Subfigure (a) shows the accuracy obtained for each

class if the threshold is fixed to 0.09 and subfigure (b) shows the F-measure.

As already explained, accuracy is not a reliable measure and figure 6.8(a) confirms

this. For many classes the LDA-based model is found to perform better in accuracy,

although all of the other graphs and measures suggest the opposite. Moreover, the

only case where it is greatly outperformed by the SVM model is for the dominant

class “Person”. Clearly, in our dataset the unbalanced data are the cause for the high

accuracy recorded for rare classes. For example, the score for “dining table” is almost

100%, although for the rest of the measures it was almost unacceptable. The reason

for this, is that accuracy weights True Positives equally to True Negatives. In order to

demonstrate the impact of this phenomenon, we evaluated the LDA-based model on

the test set of dSIFT500 using only 20 iterations for inference and we paste a sample

from the log file created, which contains the confusion matrices of each class:
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(a) Dataset: dSIFT500 (b) Dataset: dSIFT500

Figure 6.8: Threshold is fixed to 0.09. The figures show the accuracy (a) and F-measure (b) of
both models by class for this threshold.

class11 - dining_table:

Acc = 0.9868 (TP = 0 , TN = 749)

Recall = 0.0000

TN/N = 0.9987

class15 - person:

Acc = 0.2806 (TP = 202 , TN = 11)

Recall = 0.9951

TN/N = 0.0179

As can be seen, the classifier found none of the true positives whereas it found

almost all true negatives (T N/N ∼= 1) for the rare class “dining table” whereas for the

frequent class “Person” it found almost all true positives (Recall ∼= 1) but very few true

negatives. However, accuracy is very high in the first case, although the true negatives

where found simply because the classifier cannot distinguish “dining tables” in images

and tends to predict “no dining table” in all cases. From a quick calculation (based on

figure 3.2 for the training set) it follows that there are only 17 labels of “dining table”

in the test set whereas there are 203 for “Person”. As for the training set, the classifier

has only 53 instances of “dining table” to learn from versus 940 for “Person”.

The fact that the LDA-based model is more prone to this phenomenon (as it has

higher accuracy and lower F-measure and AP) means that it tends to assign higher

probabilities to the most dominant classes. We conclude, thus, that the LDA-based
model is affected more by imbalanced data.
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6.2.3 Mean Average Precision results

Finally, the results for all classes and thresholds will be summarized in a single number

for each dataset: MAP measure. We can also go one step further and calculate the

average for all datasets as well as the corresponding differences between the models.

Table 6.1 summarizes all the above. The fact that dSIFT300 and hSIFT300 result in

the same score for the LDA-based model, is just a coincidence. One can manually

calculate these results from figures 6.3(d) and 6.3(c), which obviously show different

scores by class which just happen to have the same mean.

Table 6.1: The Mean Average Precision for the SVM and the LDA-based model for every
feature-set.

Figure 6.9 contains the results’ chart for the PASCAL 2008 object classification

competition [Everingham et al., 2008], modified in order to include the results of the

models created for our project. It shows the Median AP achieved. We calculated and

included the Median AP score obtained by the best dataset, as it is the same dataset

which the experiments performed in the validation set suggested as being the best (in

terms of Mean AP). As mentioned in the beginning of section 6.2, the PASCAL orga-

nizers used a different test set, so the comparison can only be made without attempting

to draw detailed conclusions. In any case, though, it is obvious that both of our models

had scores comparable to the ones achieved by the participants of the challenge, or at

least to the group with the less impressive performance.

Table 6.1 forms the basis for some very important conclusions which regard not

only the classifiers but the datasets as well:

1. The fact that the SVM model performs better than the LDA-based one is very

obvious.

2. Both models perform the best on the dSIFT500 dataset. This suggests that the
dSIFT500 feature set is the best of all four.
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Figure 6.9: The Median Average Precision of all participants of the PASCAL 2008 challenge,

where we included our models as well. Note, however, that we used a different test set than the

one used in the formal competition. source: [Everingham et al., 2008]

3. Although the two classifiers are very different in nature, the difference in their

performance for each dataset is similar, i.e in a small range of variation, which

suggests that we can easily generalize about the quality of the feature-set
as well as about the capabilities of our LDA-based model. For example, it

is reasonable to believe that a third classifier is more likely to perform better

in the dSIFT500 feature set as well. It is also reasonable to believe that in a

different classification task, our LDA-based model would achieve scores in the

same levels (when compared to SVM).

4. Comparing the scores for dSIFT500 and dSIFT300, we conclude that the num-
ber of visual-words in the dataset is of great importance. For the particular

dataset, thus, 500 visual words are more appropriate than 300. Of course,

dSIFT500 was created with a less dense pixel-grid, but we consider that the

number of attributes is by far a more important factor. Moreover, by comparing

the scores on hSIFT300 and hCSIFT300, we also conclude that color informa-
tion in the descriptors results in better performance. Finally, by comparing

the scores on hSIFT300 and dSIFT300 we can see that dense sampling is al-
most as good as a more sophisticated technique, i.e interest point sampling.

In fact, for SVM it is better.

5. Last but most important, we proved that although our LDA-based model has
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not been extensively modified for the specific task of object categorization,
it can perform in an acceptable level for this kind of tasks. More specifi-

cally, despite the assumptions and parametrization made for the specific object

categorization task, the LDA-based model is still a model for automatic image

annotation.

6.2.4 Reducing the amount of training data

The main focus of this project was not on discovering the best of the two models,

because the SVM is the standard approach to the object categorization task whereas

the LDA-based model is designed for a different purpose and it is not a surprise that

it is outperfomed. However, through this comparison we do try to reveal interesting

properties that the LDA-based model might have in contrast to SVM, so that they could

potentially be used for a robust, combined model. For this reason, motivated by the

work of [Quelhas et al., 2005] we designed a final experiment where the training set

is reduced in two progressive steps and the models are re-evaluated. [Quelhas et al.,

2005] showed that representing the data with the aid of PLSA results in algorithms

which can classify scenes better even if the training set is reduced a lot.

Therefore, we trained our models with two subsets of the training set of dSIFT500:

one with 1000 instances (47% of the original dataset) and one with 300 instances

(14.3% of the original dataset). Notice that in the second case the number of train-

ing points is even less than the number of attributes. The test set was not changed. The

results of this experiment can be seen in table 6.2. Note that for this kind of experiment

we are not interested in measuring the exact performance, but we rather focus on the

difference of the score in comparison with the corresponding one obtained when train-

ing on the full dataset. For this reason, we used a smaller number of Gibbs sampling

iterations for the LDA-based model, and that is why the results for the full dataset

do not match those of table 6.1. Obviously, the LDA-based model is more robust
to insufficient training data. The decrease in its relative performance is 13.6% for

the first subset and 25.4% for the smallest, whereas the corresponding numbers for

SVM are 16.4% and 50.5%, almost reaching the LDA-based model’s performance in

the second case. Therefore, we confirm that this general property of algorithms based

on topic models, mentioned by [Quelhas et al., 2005], who used a very different topic

model and for a different purpose, is observed for our case too. The explanation given

there is that by representing the data and their co-ocurrences in the topic space, we can
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Table 6.2: The performance of the models in the test set of dSIFT500 when trained with less
training data and their relative decrease in parentheses.

capture more general information about visual co-ocurrences. This observation is very

important, because it can be applied to cases where the training dataset is composed of

partially label documents, a usual scenario for real-world applications.





Chapter 7

Conclusion and future work

7.1 Conclusion

The main objective of this project was to investigate the applicability of automatic

image annotation algorithms based on topic models to a challenging object categoriza-

tion task. The fact that this was carried out via a case study, allowed us to demon-

strate how the combination of experiments and literature review can be used in order

to take optimal decisions for this particular task in every step of the overall process,

from dataset preparation to evaluation of the results. The main focus was the creation

of the datasets with different feature extraction methods and, of course, building our

LDA-based model by slightly modifying GM-LDA citemodellingAnnotatedData and

making our own choices and assumptions to better suit the object categorization task.

What is more, we proposed an efficient implementation by modifying the update equa-

tion of the Gibbs sampling algorithm which was originally proposed for performing

inference for the traditional LDA.

The first set of experiments involved the parameter estimation for our models, and

especially for the LDA-based one and for the specific task of object categorization. We

showed that the number of topics K is related to the smoothing parameter β and that

different combinations of these can result in similar performance. Unfortunately, we

found no single rule which describes the relation between K and β or even between

K and the total number of classes C and, thus, experiments for estimating optimal

values are considered to be unavoidable. In effect, our experience from optimizing

both models’ parameters suggests that an SVM is more easily tuned.

The second set of experiments involved evaluating the performance of the LDA-

based and the SVM model on four different feature sets. Although the LDA-based

89
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model is clearly outperformed, its performance is still comparable to the one obtained

from the SVM classifier. The fact that an algorithm taken from the image annotation

domain had an acceptable performance to this different task without major modifica-

tions gives a clear answer to the question posed by our main objective, i.e if algorithms

originally designed for image annotation can achieve reasonable scores in object cat-

egorization tasks. This makes us consider, thus, that our main goal was achieved.

However, in order to generalize our conclusions it is vital to evaluate different LDA-

based models on object categorization tasks, and this is one of the issues discussed in

the next section.

Moreover, the evaluation results give some insight about the weaknesses and strengths

of the LDA-based model. The fact that class labels are learned by indirectly counting

co-occurrences of class labels with images via topics, in combination with the fact that

each image is represented as a mixture of topics makes the LDA-based model to be

more affected by imbalanced data. However, if imbalance is not an issue for a dataset,

the LDA-based model was found to be more robust to other forms of “bad” datasets;

firstly, because it is able to adapt better to the nature and characteristics of the image

database whereas the SVM classifier relies more on choosing a good feature set. Sec-

ondly, because its performance deteriorates slower than the SVM’s when the size of

the training set is reduced. Finally, the fact that the training and inference phases of

the LDA-based model are computationally expensive is a serious drawback, although

our experiments show that when a much smaller number of Gibbs sampling iterations

is used the results don’t change significantly, so the trade-off is not large.

As far as the different feature extraction methods are concerned, we confirmed that

the total number of visual words as well as the presence of rich color information in

feature descriptors determine the overall quality of the dataset. As for feature detection,

dense sampling performed as good as the Harris-Laplace feature detector.

7.2 Future work

As was already mentioned, our model is based on the GM-LDA one but we slightly

modified it in order to better suit, hopefully, the object categorization task. The greatest

assumption regards the type of distribution from which topics are sampled for visual

words. We use a multinomial with the same β for the set of visterms and caption

words as well, while most of the existing LDA-based models use a Gaussian with

parameters which are learned independently. However, the fact that the performance
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results are at least encouraging does not mean that these modifications worked towards

the right direction. Thus, we consider that it is important to perform the same series

of experiments with the original GM-LDA model. Another extension would be to

allow different β parameters to be learned for the two kinds of terms (words and visual

words).

In addition, in order to learn K we designed a set of experiments based on some

intuitive assumptions and previous research. Thus, although this setting is not found in

an entirely heuristic way, it still relies on the results of a small number of experiments.

Therefore, it would be interesting to perform parameter estimation using Bayesian

methods, as described in [Griffiths and Steyvers, 2004]. The problem is that this

approach needs β to be given, but using our already estimated β’s would be a good

starting point.

Although we focused on proving that the LDA-based model’s performance is com-

parable to the one obtained by the SVM, it would be an interesting idea to use the

more robust corr-LDA model [Blei and Jordan, 2003] in order to investigate if such

models can even outperform the traditionally used SVM, as it does not suffer of the

problems caused by the loose connection that GM-LDA imposes between words/topic

and visual word/topic pairs. Of course, as was mentioned in section 5.1.1, this would

require smoothing techniques to be used for corr-LDA so that we could get the most

out of its capabilities.

Finally, an even more interesting extension of this project would be to compare our

LDA-based model, which is heavily based on one originally designed for image an-

notation purposes, with others that are also based on LDA but are designed especially

for object categorization purposes. Comparing with the work by [Quelhas et al., 2005]

and [Sivic et al., 2005] would be a reasonable start for this type of experiments.
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(a) Dataset: hCSIFT300 (b) Dataset: hCSIFT300

(c) Dataset: dSIFT300 (d) Dataset: dSIFT300

(e) Dataset: hSIFT300 (f) Dataset: hSIFT300

Figure 8.1: Threshold is fixed to 0.09. The figures show the accuracy and F-measure of both
models by class for this threshold.
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(a) SVM. Dataset: hCSIFT300 (b) LDA-based. Dataset: hCSIFT300

(c) SVM. Dataset: dSIFT300 (d) LDA-based. Dataset: dSIFT300

(e) SVM. Dataset: hSIFT300 (f) LDA-based. Dataset: hSIFT300

Figure 8.2: Precision-recall figures for class 15. Note the difference in the maximum value of
Y-axis.
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