DEEP GAUSSIAN PROCESSES FOR LARGE DATASETS

JAMES HENSMAN^{a,b}, ANDREAS DAMIANOU^{a,b} and Neil D. Lawrence^{a,b}

PROBLEM

We wish to develop a Deep Belief Network where the transformation between layers is probabilistic and modelled with Gaussian processes.

The function f_l(·) is modelled with a GP
Assume noise β_l at each level
The mapping instantiations f_l = f_l(h_l) can be f_l = f_l(h_l) can be cally: p(h_l|h_{l-1}) =

VARIATIONAL COMPRESSION

Consider one layer of our infrence problem. Use the conditional distribution as the variational distribution:

$$p(y|u) = \frac{p(y|h)p(h|u)}{p(h|u, y)}$$
$$\log p(y|u) = \mathbb{E}_{p(h|u)} \left[\log p(y|h)\right]$$
$$+ \underbrace{\operatorname{KL} \left[p(h|u) \parallel p(h|b, y)\right]}_{\operatorname{Small} \text{ if } u \text{ explains } h \text{ very well}}$$

We can compute the marginal distribution in the variational approximation easily:

INFERENCE FOR LARGE DATASETS

How can we handle large datasets?

Stochastic variational inference (SVI):

SVIGP-style: [Hensman et al., UAI 2013]

- . Represent the parameters $\{m, \Sigma\}$ of q(u) in two *equivalent* ways:
 - Canonical form: $\theta = \{\Sigma^{-1}m, -\frac{1}{2}\Sigma^{-1}\}$
 - Expectation form: $\eta = \{m, mm^{\top} + \Sigma\}$
- Treat *u* as *global variables*. This allows for the factorisation of the contributions of every input/output pair $\{x_{l,i}, y_i\}$.

 $= \int p(h_l | \bar{f}_l) p(\bar{f}_l | h_{l-1}) \, \mathrm{d}\bar{f}_l$ $= \mathcal{N}(h_l | 0, K(h_{l-1}, h_{l-1}) + \beta_l I)$

- *How to learn the intermediate hidden layers?*
- *How to efficiently train the model?*

INDUCING VARIABLES

- . Also marginalise out hidden spaces: learn a posterior $q(h_l)$ for each layer.
- Use inducing points z_l : $u_l = f_l(z_l)$.
 - Let $q(u_l) = \mathcal{N}(u_l | m_l, \Sigma_l)$.
- ../diagrams/graphical_in $\{\tilde{u}_{l}, \tilde{b}_{l}, \tilde{f}\}$ pairs but result in low rank representations of the covariance matrices.
 - Inducing points are variational parameters allowing us to lower bound the evidence: $\mathcal{F} \leq \log p(y)$

Given the above, how can we define $p(h_l|h_{l-1}, u_l)$?

- Given X and a fixed $q(u_1)$, we can compute $q(h_1)$
- For a fixed $q(h_1)$, we can variationally propagate using $q(u_2)$ to get $q(h_2)$ (blue arrows)
- Continue to feed-forward to the bottom layer. The variational propagation at each layer introduces a penalty (regularizing) term which affects the bound on the marginal likelihood

• Optimise the parameters using the natural gradients of q(u):

$$\theta_{t+1} = \theta_t + s \frac{\mathcal{F}}{\mathrm{d}\eta},$$

where s is the learning step

Adapting the learning step *s*:

- Stochastic optimisation is very sensitive to *s*.
- [Ranganath et al. ICML 2013] dynamically adapt s to minimize the expected loss between the parameter vector after the stochastic variational update, θ_{t+1} , and the vector after a full variational update θ_{t+1}^*
- Here we consider the loss in the KL sense, considering the involved distributions:

$\mathrm{KL}\left[q(u|\theta^*) \parallel q(u|\theta)\right]$

This takes into account the geometry of the parameter space.

INFERENCE STRATEGIES

We need to deal with q(h) and q(u). Three strategies:

- 1. Collapse out *u* ([Damianou et al., AISTATS 2013])
 Optimize q(h)
- 2. Maintain q(h) and q(u)
 - EM-style optimisation for q(u) and q(h)
- 3. Compress q(h) into q(u) using p(h|u)
- Applying the chain-rule leads to backpropagation (red arrows), but with *Gaussian* messages passed layer-to-layer

TODO

- Currently, SVI inference is implemented only for 1layer models
- Extend SVI inference framework in deep models
- Training scheme combining optimisation of variational and kernel parameters
- Fix initialisation issues
- Explore auto-encoder architectures

EXPERIMENTS

Toy problem		Loop detection in robotics	
Fit GP (1 layer)	Hidden spaces	True path	Dynamically con- strained model
/diagrams/png/H0_predic	/diagrams/step_all.j	pdf /diagrams/robot_path.pdf	 Correctly detects the loop Learns temporal continuity and corpor like features
			in different layers

Big Data

- 12 Subjects, 95 diverse motions, 20K datapoints
- . Learns a general model of human motion
- Outperforms Bayesian GP-LVM (trained on subsets) for reconstructing part of test body parts
- We considered a 1-layer model but used SVI inference with adaptive learning step

Example frame

Hidden space projections: Global motion features

