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PROBLEM

We wish to develop a Deep Belief Network where the
transformation between layers is probabilistic and mod-
elled with Gaussian processes.

. The function f;(-) is mod-
elled with a GP

. Assume noise 3; at each level

. The mapping instantia-

tions f; = fi(h;) can be
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. How to learn the intermediate hidden layers?
. How to efficiently train the model?

INDUCING VARIABLES

. Also marginalise out hid-
den spaces: learn a posterior
q(h;) for each layer.

. Use inducing points z;:
w = fi(z1).
. Let g(w) = N (w|my, X).

.. /diagrams/graphical_inoﬁ@gﬁmg}. pcliay the same role as
{hy, f} pairs but result in low
rank representations of the
covarlance matrices.

. Inducing points are varia-
tional parameters allowing
us to lower bound the evi-

dence: F < log p(y)
Given the above, how can we define p(h;|h;—1,u;)?

INFERENCE STRATEGIES
We need to deal with ¢(h) and g(u). Three strategies:

1. Collapse out u ([Damianou et al., AISTATS 2013])
- Optimize q(h)

2. Maintain ¢(h) and q(u)
- EM-style optimisation for ¢(u) and q(h)

3. Compress g(h) into g(u) using p(h|u)

VARIATIONAL COMPRESSION

Consider one layer of our infrence problem. Use the
conditional distribution as the variational distribution:

- p(y|h)p(h|u)
p(h|u, y)
log p(y|u) = Ep(nju) [log p(y[h)]
+ KL [p(hlu) || p(h|b, y)]
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Small if u explains h very well

We can compute the marginal distribution in the varia-
tional approximation easily:
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. Given X and a fixed ¢(u; ), we can compute q(hq)

. For a fixed ¢q(h;), we can variationally propagate us-
ing q(uz) to get q(h2) (blue arrows)

. Continue to feed-forward to the bottom layer. The
variational propagation at each layer introduces a
penalty (regularizing) term which affects the bound
on the marginal likelihood

. Applying the chain-rule leads to backpropagation
(red arrows), but with Gaussian messages passed
layer-to-layer

INFERENCE FOR LARGE DATASETS

How can we handle large datasets?

Stochastic variational inference (SVI):

SVIGP-Style: [Hensman et al., UAI 2013]

. Represent the parameters {m,>} of ¢(u) in two
equivalent ways:
- Canonical form: 6 ={Z"'m,—12"1}
- Expectation form: n = {m,mm ' + X}

. Treat u as global variables. This allows for the fac-
torisation of the contributions of every input/output

pair {x;.;,yi }.

. Optimise the parameters using the natural gradients
of q(u):
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where s is the learning step

Adapting the learning step s:

. Stochastic optimisation is very sensitive to s.

. [Ranganath et al. ICML 2013] dynamically adapt s to mini-
mize the expected loss between the parameter vector
after the stochastic variational update, 6,1, and the
vector after a full variational update 65, ;

. Here we consider the loss in the KL sense, consider-
ing the involved distributions:

KL [g(u]0) || q(u|0)

This takes into account the geometry of the parame-
ter space.

TODO

. Currently, SVI inference is implemented only for 1-
layer models

. Extend SVI inference framework in deep models

. Training scheme combining optimisation of varia-
tional and kernel parameters

. Fix initialisation issues

. Explore auto-encoder architectures

EXPERIMENTS

Toy problem
Fit Hidden spaces
GP (1 layer)
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2 layers
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4 layers
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Loop detection in robotics

True path . Dynamically con-
strained model

. Correctly detects the

loop
. Learns temporal
. ./diagrams/robot_path.pdf Continuity and

corner-like features
in different layers

Data fit

Hidden layer 1
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Hidden layer 2
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Big Data
. 12 Subjects, 95 diverse motions, 20K datapoints

. Learns a general model of human motion

. Outperforms Bayesian GP-LVM (trained on sub-
sets) for reconstructing part of test body parts

. We considered a 1-layer model but used SVI in-
ference with adaptive learning step

Example frame Hidden space projections:

Global motion features
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