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PROBLEM
We wish to develop a Deep Belief Network where the
transformation between layers is probabilistic and mod-
elled with Gaussian processes.
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� The function fl(·) is mod-
elled with a GP

� Assume noise βl at each level
� The mapping instantia-

tions f̄l = fl(hl) can be
marginalised out analyti-
cally: p(hl|hl−1) =

=

∫
p(hl|f̄l)p(f̄l|hl−1) df̄l

= N (hl|0,K(hl−1, hl−1) + βlI)

� How to learn the intermediate hidden layers?
� How to efficiently train the model?

INDUCING VARIABLES
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� Also marginalise out hid-
den spaces: learn a posterior
q(hl) for each layer.

� Use inducing points zl:
ul = fl(zl).

� Let q(ul) = N (ul|ml,Σl).

� {zl, ul} play the same role as
{hl, f̄} pairs but result in low
rank representations of the
covariance matrices.

� Inducing points are varia-
tional parameters allowing
us to lower bound the evi-
dence: F ≤ log p(y)

Given the above, how can we define p(hl|hl−1, ul)?

INFERENCE STRATEGIES
We need to deal with q(h) and q(u). Three strategies:

1. Collapse out u ([Damianou et al., AISTATS 2013])
- Optimize q(h)

2. Maintain q(h) and q(u)
- EM-style optimisation for q(u) and q(h)

3. Compress q(h) into q(u) using p(h|u)

VARIATIONAL COMPRESSION
Consider one layer of our infrence problem. Use the
conditional distribution as the variational distribution:

p(y|u) =
p(y|h)p(h|u)

p(h|u, y)

log p(y|u) = Ep(h|u) [log p(y|h)]

+ KL [p(h|u) ‖ p(h|b, y)]︸ ︷︷ ︸
Small if u explains h very well

We can compute the marginal distribution in the varia-
tional approximation easily:

q(hl) =

∫
p(hl|ul)︸ ︷︷ ︸
∼N

q(ul)︸ ︷︷ ︸
∼N

dul

../diagrams/graphical_collapsed.pdf

� Given X and a fixed q(u1), we can compute q(h1)

� For a fixed q(h1), we can variationally propagate us-
ing q(u2) to get q(h2) (blue arrows)

� Continue to feed-forward to the bottom layer. The
variational propagation at each layer introduces a
penalty (regularizing) term which affects the bound
on the marginal likelihood

� Applying the chain-rule leads to backpropagation
(red arrows), but with Gaussian messages passed
layer-to-layer

INFERENCE FOR LARGE DATASETS
How can we handle large datasets?

Stochastic variational inference (SVI):

SVIGP-style: [Hensman et al., UAI 2013]

� Represent the parameters {m,Σ} of q(u) in two
equivalent ways:

- Canonical form: θ = {Σ−1m,− 1
2Σ−1}

- Expectation form: η = {m,mm> + Σ}

� Treat u as global variables. This allows for the fac-
torisation of the contributions of every input/output
pair {xl,i, yi}.

� Optimise the parameters using the natural gradients
of q(u):

θt+1 = θt + s
F
dη
,

where s is the learning step

Adapting the learning step s:

� Stochastic optimisation is very sensitive to s.

� [Ranganath et al. ICML 2013] dynamically adapt s to mini-
mize the expected loss between the parameter vector
after the stochastic variational update, θt+1, and the
vector after a full variational update θ∗t+1

� Here we consider the loss in the KL sense, consider-
ing the involved distributions:

KL [q(u|θ∗) ‖ q(u|θ)]

This takes into account the geometry of the parame-
ter space.

TODO
� Currently, SVI inference is implemented only for 1-

layer models

� Extend SVI inference framework in deep models

� Training scheme combining optimisation of varia-
tional and kernel parameters

� Fix initialisation issues

� Explore auto-encoder architectures

.

EXPERIMENTS
Toy problem

Fit
GP (1 layer)
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2 layers
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4 layers
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Hidden spaces
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Loop detection in robotics

True path
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Hidden layer 1
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Hidden layer 2
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� Dynamically con-
strained model

� Correctly detects the
loop

� Learns temporal
continuity and
corner-like features
in different layers

Data fit
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Example data fits for 2 of
the 30 output dimensions

Big Data
� 12 Subjects, 95 diverse motions, 20K datapoints
� Learns a general model of human motion
� Outperforms Bayesian GP-LVM (trained on sub-

sets) for reconstructing part of test body parts
� We considered a 1-layer model but used SVI in-

ference with adaptive learning step

Example frame
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Adaptive learning step
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Hidden space projections:
Global motion features
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Clustered motion features
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