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Part 1: Introduction



General area of interest

» Dynamical systems.
» Non-linear models; models with exogenous inputs (NARX)

» Model-based, data-driven approaches for regressive and
auto-regressive inference.



Examples

Through a model, we wish to learn to:

» perform free simulation by learning patterns coming from the
latent generation process (a mechanistic system we do not
know)

» perform inter/extrapolation in time-series data which are very
high-dimensional (e.g. video)

» detect outliers in data coming from a dynamical system

» optimize policies for control based on a model of the data.



Data-driven

Data driven: Learn from data by exploiting patterns through
probabilistic modelling.

v

Complex situations where no ODEs are present etc.

v

Prior probabilities can to some degree incorporate side
knowledge.

v

Principled handling of noise / uncertainty.
> .
Cons:

» More difficult to incorporate mechanistic knowledge (although
there's work attempting to do this).

» Relies on the way the model is optimized (local minima,
approximations, computational inefficiencies, numerical
problems...)



Model-based approach

Mechanistic model challenge: create a model which is as simple as
possible but also as close to reality as possible.

Probabilistic model challenge: enrich the statistical properties of
the model: robustness to outliers, representation learning (e.g.
deep, auto-encoders)



Why Model with Gaussian process

v

Uncertainty quantification

v

learn from few data

v

attractive analytical properties

v

Bayesian framework: make modelling assumptions explicit.



Cool stuff you can do with GPs #1

Model-based policy learning

» https://www.youtube.com /watch?v=XiigT GKZfks (Cart-pole)

» http://mlg.eng.cam.ac.uk/?portfolio=andrew-mchutchon (Unicycle)

Work by: Marc Deisenroth, Andrew McHutchon, Carl Rasmussen


https://www.youtube.com/watch?v=XiigTGKZfks
http://mlg.eng.cam.ac.uk/?portfolio=andrew-mchutchon
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Part 2: Gaussian processes
GPs as infinite dimensional Gaussian distributions



Introducing Gaussian Processes:

» A Gaussian distribution depends on a mean and a covariance
matrix.

» A Gaussian  process depends on a mean and a covariance
function.



Infinite model... but we always work with finite sets!

Let's start with a multivariate Gaussian:
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with:

Marginalisation property:
p(fa,fp) ~ N(p,K).  Then:

p(fa) = / p(fa,f5)dfp = N (14, Kana)

fp



Infinite model... but we always work with finite sets!

In the GP context:
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Posterior is also Gaussian!

p(fa,fp) ~ N(p,K). Then:
p(falfp) = N(pa + KapKyp(fs — pg), Kaa — KapK5pKpa)
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Posterior is also Gaussian!

p(fa,fp) ~ N(p,K). Then:
p(falfp) = N(pa + KapKyp(fs — pg), Kaa — KapK5pKpa)

In the GP context this can be used for inter/extrapolation:
f*|f1a T ’fN ~ gPpost

p(felfr, - In) = p(f (x| (1), -+, fzn))
~NK/K'f K,.-K/K'K,)

But where is K coming from in GPs?



Covariance samples and hyperparameters

> k(z,2') = aexp (—3(z —2) T (z — 1))

» The hyperparameters of the cov. function define the
properties (and NOT an explicit form) of the sampled
functions




Incorporating Gaussian noise is tractable

» So far we assumed: f = f(X)

» Assuming that we only observe noisy versions y of the true
outputs f:
y:f(X) + € €NN(0702)



Fitting the data (shaded area is uncertainty)




Fitting the data - Prior Samples

3




Fitting the data




Fitting the data




Fitting the data - more noise




Fitting the data - no noise




Fitting the data - Posterior samples




Fitting the data




Fitting the data




Fitting the data




Fitting the data




Fitting the data




Fitting the data




Part 1. Take-home messages

» Gaussian processes as infinite dimensional Gaussian
distributions

» = can be used as priors over functions
» Non-parametric: training data act as parameters

» Principled handling of uncertainty
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NARX model

A standard NARX model considers an input vector x; € RP
comprised of L, past observed outputs y; € R and L, past
exogenous inputs u; € R:

T
Xi = [Yi-1, " yYi—Ly, Wi—1," "~ UiaLy] s
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NARX model

A standard NARX model considers an input vector x; € RP
comprised of L, past observed outputs y; € R and L, past
exogenous inputs u; € R:

T
Xi = [Yi-1, " yYi—Ly, Wi—1," "~ UiaLy] s

yi=fx)+e?, P~ N(EV)0,02),

Latent auto-regressive GP model:
(2)

xi:f(xi—].?"' ,l'ifLIUi_]_,"‘ 7uifLu)+€i )
(y)

Yi = T + €

Contribution 1: Simultaneous auto-regressive and
representation learning.

Contribution 2: Latents avoid the feedback of pos-
sibly corrupted observations into the dynamics.

Mattos, Damianou, Barreto, Lawrence, 2016



Robustness to outliers

Latent auto-regressive GP model:

(z)

@i = f(@i1,  Timp Ui, Ui—L,) T &,
(v)
Yi =T + €

e~ N(e7]0,02),
eV N(eM0,77Y), 7 ~ D(rila, B),

Contribution 3: “Switching-off” outliers by including the above
Student-t likelihood for the noise.

Mattos, Damianou, Barreto, Lawrence, 2016



Robust GP autoregressive model: demonstration
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Figure: RMSE values for free simulation on test data with different levels
of contamination by outliers.
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Going deeper: Deep Recurrent Gaussian Process

—ow

Figure 1: RGP graphical model with H hidden layers.

T is the lagged latent function values augmented with the lagged
exogenous inputs.

Mattos, Dai, Damianou, Barreto, Lawrence, 2016



Inference is tricky...
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Results

Results in nonlinear systems identification:
1. artificial dataset

2. “drive" dataset: by a system with two electric motors that
drive a pulley using a flexible belt.

» input: the sum of voltages applied to the motors
» output: speed of the belt.
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Avatar control

i ‘:\!;\ QNS

Figure: The generated motion with a step function signal, starting with
walking (blue), switching to running (red) and switching back to walking
(blue).

Videos:
Switching between learned speeds
Interpolating (un)seen speed
Constant unseen speed


https://youtu.be/FR-oeGxV6yY
https://youtu.be/AT0HMtoPgjc
https://youtu.be/FuF-uZ83VMw

Regressive dynamics with deep GPs

Instead of coupling f's by encoding the Markov property,
we couple them by coupling the f’s inputs through
another GP with time as input.

y=f(z)+e
x ~GP(0, kz(t,t))
I~ gP(Ov kf(x’ Jj))

Damianou, Titsias, Lawrence, 2011



Dynamics

» Dynamics are encoded in the covariance matrix K = k(t, t).

» We can consider special forms for K.

Model individual sequences Model periodic data
| 4 (missa)
> (dog)

> (mocap)


https://www.youtube.com/watch?v=i9TEoYxaBxQ
https://www.youtube.com/watch?v=mUY1XHPnoCU
https://www.youtube.com/watch?v=fHDWloJtgk8

Summary

» Data-driven, model-based approach to control problems

» Gaussian processes: Uncertainty quantification / propagation
gives an advantage

» Deep Gaussian processes: Representation learning + dynamics
learning

» Future work: Deep Gaussian processes + mechanistic
information; consider “real” applications.

Thanks!
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