
Gaussian processes for data-driven modelling and
uncertainty quantification: a hands-on tutorial

Andreas Damianou

Department of Computer Science, University of Sheffield, UK

Brown University, 16/02/2016



Sheffield



Outline

1. Gaussian processes as infinite dimensional Gaussian
distributions

1.1 Gaussian distribution
1.2 Intuition by sampling and plotting
1.3 Mean and covariance functions
1.4 Marginalization and conditioning properties

2. Noise model

3. Covariance functions, aka kernels

4. “Full” GP implementation!

5. Running our GP

5.1 Fitting and overfitting

6. GPy

7. Classification



Gaussian distribution

Probability model: p(f1, f2) ∼ N (0,K)
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Gaussian distribution

Probability model: p(f1, f2) ∼ N (0,K)
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Introducing Gaussian Processes:

I A Gaussian distribution depends on a mean and a covariance
matrix.

I A Gaussian process depends on a mean and a covariance
function.































































GO TO NOTEBOOK (start)



Infinite model... but we always work with finite sets!

Let’s start with a multivariate Gaussian:

p(f1, f2, · · · , fs︸ ︷︷ ︸
fA

, fs+1, fs+2, · · · , fN︸ ︷︷ ︸
fB

) ∼ N (µ,K).

with:

µ =

[
µA

µB

]
and K =

[
KAA KAB

KBA KBB

]
Marginalisation property:

p(fA, fB) ∼ N (µ,K). Then:

p(fA) =

∫
fB

p(fA, fB)dfB = N (µA,KAA)
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Infinite model... but we always work with finite sets!

In the GP context f = f(x):

µ∞ =

µf

· · ·
· · ·

 and K∞ =

[
K

ff
· · ·

· · · · · ·

]

Covariance function: Maps locations xi, xj of the input domain
X to an entry in the covariance matrix:

Ki,j = k(xi,xj)

For all available inputs:

K = K
ff
= k(X,X)



GP: joint Gaussian distribution of the training and the
(potentially infinite!) test data:

[
f
f∗

]
∼ N

(
0,

[
K K∗
K>∗ K∗,∗

])
K∗ is the (cross)-covariance matrix obtained by evaluating the covariance

function in pairs of training inputs X and test inputs X∗, ie.

f∗ = k(X,X∗).

Similarly:

K∗∗ = k(X∗,X∗).



Posterior is also Gaussian!

p(fA, fB) ∼ N (µ,K). Then:

p(fA|fB) = N (µA +KABK
−1
BB(fB − µB),KAA −KABK

−1
BBKBA)

In the GP context this can be used for inter/extrapolation:

p(f∗|f1, · · · , fN ) = p(f(x∗)|f(x1), · · · , f(xN )) ∼ N
p(f∗|f1, · · · , fN) = p(f(x∗)|f(x1), · · · , f(xN ))

∼ N (K>∗K
−1f , K∗,∗ −K>∗K

−1K∗)

p(f(x∗)|f(x1), · · · , f(xN )) is a posterior process!
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Noise model

I So far we assumed: f = f(X)
I Assuming that we only observe noisy versions y of the true

outputs f :
y = f(X) + ε, where:

f ∼ GP(0, k(x, x′))
ε ∼ N (0, σ2I)

The above construction, gives us the following probabilities:

p(y|f) = N (y|f , σ2I)

p(f |x) = N (f |0,Kff ) = (2π)n/2|Kff |−1/2 exp
(
−1

2
fTKff f

)
p(y|x) =

∫
p(y|f)p(f |x)df = N (y|0,Kff + σ2I)

p(y|x) is called the marginal likelihood and is tractable because
of our choice for noise ε which is normally distributed.
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Predictions in the noise model

y∗|y,x,x∗ ∼ N (µpred,Kpred)

with
µpred = K>∗

[
K+ σ2I

]−1
y

and
Kpred = K∗,∗ −K>∗

[
K+ σ2I

]−1
K∗.



Fitting the data (shaded area is uncertainty)
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Fitting the data - Prior Samples
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Fitting the data - more noise
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Fitting the data - no noise
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Fitting the data - Posterior samples
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GO TO NOTEBOOK (Cov. functions)



Curve fitting
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Need a good balance between data fit vs overfitting!



(Bayesian) Occam’s Razor

“A plurality is not to be posited without necessity”. W. of Ockham

“Everything should be made as simple as possible, but not simpler”. A. Einstein

Evidence is higher for the model that is not “unnecessarily
complex” but still “explains” the data D.



How do GPs solve the overfitting problem (i.e. regularize)?

I Answer: Integrate over the function itself!

I This is associated with the Bayesian methodology.

I So, we will average out all possible function forms, under a
(GP) prior!

Recap:

ML: argmax
w

p(y|w, φ(x)) e.g. y = φ(x)>w + ε

Bayesian: argmax
θ

∫
f p(y|f) p(f |x,θ︸ ︷︷ ︸

GP prior

) e.g. y = f(x,θ) + ε

I θ are hyperparameters

I The Bayesian approach (GP) automatically balances the
data-fitting with the complexity penalty.
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GO TO NOTEBOOK



Teaser for tomorrow

I Unsupervised learning with GPs (Bayesian non-linear
dimensionality reduction)

I Deep GPs

I Dynamical systems

I ..and more...



Deep GP: Step function (credits for idea to J. Hensman)

| | | | | | | (standard GP)

| | | | | | | (deep GP - 1 hidden layer)

| | | | | | |

(deep GP - 3 hidden layers)
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