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Part 1: GP Take-home messages

v

Gaussian processes as infinite dimensional Gaussian
distributions

» = can be used as priors over functions

» Non-parametric: training data act as parameters

v

Uncertainty Quantification

v

Learning from scarce data



Notation and graphical models

Graphical models

» White nodes: Observed variables

» Shaded nodes: Unobserved, or latent
f variables.

» Convention: Sometimes the latent
function will be placed next to the arrow;
sometimes I'll explicitly include the
collection of instantiations f

®
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Unsupervised learning: GP-LVM

» If X is unobserved, treat it as a parameter and
optimize over it.
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Unsupervised learning: GP-LVM

» If X is unobserved, treat it as a parameter and
optimize over it.

f » GP-LVM is interpreted as non-linear, non-parametric
p p
pFObab”iStiC PCA (Lawrence, smLR 2015).

» Objective (likelihood function) is similar to GPs:

p(ylx) = / Py |D)p(Ex)dE = N (y]0, K + 0°T)

but now x's are optimized too.

Neil Lawrence, JMLR, 2005.



Fitting the GP-LVM
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Fitting the GP-LVM

Figure credits: C. H. Ek
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Fitting the GP-LVM

Figure credits: C. H. Ek
5.5

F----%
5.0F i

45 kR

=2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

» Additional difficulty: x's are also missing!

» Improvement: Invoke the Bayesian methodology to find z's
too.



Bayesian GP-LVM

Additionally integrate out the latent space.

p(y) = / D(y1E)p(E])p () dfdx

where

p(X) ~ N(O7I)

Titsias and Lawrence 2010, AISTATS; Damianou et al. 2015, JMLR



Automatic dimensionality detection

» In general, X = [xy,...,xy] with x(") € RO,

» Automatic dimenionality detection by employing automatic
relevance determination (ARD) priors for the mapping f.

» f~GP(0,ks) with:

—
1.2 3 4 5 6 7 8 9 10
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Sampling from a deep GP

Unobserved

Input




Model

X = given

fr, = fu(z) = GP(0, ky(x, x))
h = fi(z) + €,

f, = fy(h) = GP(0, ks(h, h))
y = fy(h) + ¢

So: y = f,(fin (x) + 1) + ¢,

Objective:
plylx) = [ ply1e)p(8 )p(0l6,)p(6: )dt

Damianou an d Lawrence, AISTATS 2013; Damianou, PhD Thesis, 2015



Deep G P Step fU nCtion (credits for idea to J. Hensman, R. Calandra, M. Deisenroth)

1 (standard GP)

o———-—-ﬂ' A ———

+ " i (deep GP - 1 hidden layer)

1
0.5~
D e | ————

15 2 (deep GP - 3 hidden layers)



fi = fi(x) fo = fa(f1)

1 -05 [ 05 1 15 2 1 -05 [ 05 1 15 2

Deep GP with three hidden plus one warping layer

Standard GP




Non-linear feature learning

Stacked GP

@ (2)
(nonlinear) . s
4> —_—
f(U ‘/-‘gl)

7"

Stacked PCA

7 fu)
(linear) C\ C\
fa :

> Successive warping creates "knots” whlch act as features.

> Features discovered in one layer remain in the next ones (ie knots

are not un-tied)
S1(f2(f3()))

» With linear warpings (stacked PCA) we can't achieve this effect:
Wy (Wa(Wsz))) = W

Damianou, PhD Thesis, 2015



Deep GP: MNIST example

Outputs obtained
Optimised after sampling
weights from (certain nodes)
of layers 1,2,4,5

w1 rll zmmnnnn?ﬁ&?ﬁé
encoding
AT | H, [A[A[A A A @ [
“in I m_ | H;
i 11l H MAAArArAmARA
Local

l
Ws H. )| feature
N N e ]\/W OIOROLOIOIO!

encoding

» https://youtu.be/E8-vxt8wxBU (Live sampling video)


https://youtu.be/E8-vxt8wxBU
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Multi-view: Manifold Relevance Determination (MRD)

Multi-view data arise from multiple information sources. These
sources naturally contain some overlapping, or shared signal (since
they describe the same “phenomenon”), but also have some
private signal.

MRD: Model such data using overlapping sets of latent variables

Demo: i eI Faces, & https://youtu.be/xOXnJAAVgLE mocap-silhouette

Damianou et al., ICML 2012; Damianou, PhD Thesis, 2015
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Multi-view: Manifold Relevance Determination (MRD)

Multi-view data arise from multiple information sources. These
sources naturally contain some overlapping, or shared signal (since
they describe the same “phenomenon”), but also have some
private signal.

MRD: Model such data using overlapping sets of latent variables

Demo: Qs el Faces, & https://youtu.be/xOXnJAAVELE sy aspio

Damianou et al., ICML 2012; Damianou, PhD Thesis, 2015


https://youtu.be/rIPX3CIOhKY
https://youtu.be/xOXnJAAVgLE

Deep GPs: Another multi-view example
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Y Z



Automatic structure discovery summary: ARD and MRD
Tools:

» ARD: Eliminate uncessary nodes/connections

» MRD: Conditional independencies

?)

(

» Approximating evidence: Number of layers




Automatic structure discovery summary: ARD and MRD

Tools:
» ARD: Eliminate uncessary nodes/connections
» MRD: Conditional independencies

» Approximating evidence: Number of layers (?)

A,
AN



More deepGP representation learning examples...

» https://youtu.be/s4zATH1T]G8 iGHINEGpIri,

» https://youtu.be/uSQOvxLcfVU


https://youtu.be/s4zATH1TjG8
https://youtu.be/uSQ0vxLcfVU
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Dynamical systems examples

Through a model, we wish to learn to:

» perform free simulation by learning patterns coming from the
latent generation process (a mechanistic system we do not
know)

» perform inter/extrapolation in time-series data which are very
high-dimensional (e.g. video)

» detect outliers in data coming from a dynamical system

» optimize policies for control based on a model of the data.



Policy learning

Model-based policy learning

» https://www.youtube.com /watch?v=XiigT GKZfks (Cart-pole)

» http://mlg.eng.cam.ac.uk/?portfolio=andrew-mchutchon (Unicycle)

Work by: Marc Deisenroth, Andrew McHutchon, Carl Rasmussen


https://www.youtube.com/watch?v=XiigTGKZfks
http://mlg.eng.cam.ac.uk/?portfolio=andrew-mchutchon

NARX model

A standard NARX model considers an input vector x; € RP
comprised of L, past observed outputs y; € R and L, past
exogenous inputs u; € R:

T
Xi = [Yi-1, " yYi—Ly, Wi—1," "~ UiaLy] s

yi=fx)+e?, P~ N(EV)0,02),




NARX model

A standard NARX model considers an input vector x; € RP
comprised of L, past observed outputs y; € R and L, past
exogenous inputs u; € R:

T
Xi = [Yi-1, " yYi—Ly, Wi—1," "~ UiaLy] s

yi=fx)+e?, P~ N(EV)0,02),

Latent auto-regressive GP model:
(2)

xi:f(xi—].?"' ,l'ifLIUi_]_,"‘ 7uifLu)+€i )
(y)

Yi = T + €

Contribution 1: Simultaneous auto-regressive and
representation learning.

Contribution 2: Latents avoid the feedback of pos-
sibly corrupted observations into the dynamics.

Mattos, Damianou, Barreto, Lawrence, 2016



Robustness to outliers

Latent auto-regressive GP model:

(z)

@i = f(@i1,  Timp Ui, Ui—L,) T &,
(v)
Yi =T + €

e~ N(e7]0,02),
eV N(eM0,77Y), 7 ~ D(rila, B),

Contribution 3: “Switching-off” outliers by including the above
Student-t likelihood for the noise.

Mattos, Damianou, Barreto, Lawrence, DYCOPS 2016



Robust GP autoregressive model: demonstration

-0~ GP-NARX -4 GP-tVB -# GP-RLARX -0~ GP-NARX -4 GP-tVB -# GP-RLARX
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(a) Artificial 1. (b) Artificial 2.

Figure: RMSE values for free simulation on test data with different levels
of contamination by outliers.
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Going deeper: Deep Recurrent Gaussian Process

@

Figure 1: RGP graphical model with H hidden layers.

T is the lagged latent function values augmented with the lagged
exogenous inputs.

Mattos, Dai, Damianou, Barreto, Lawrence, ICLR 2016




Inference is tricky...
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Results

Results in nonlinear systems identification:
1. artificial dataset

2. “drive" dataset: by a system with two electric motors that
drive a pulley using a flexible belt.

» input: the sum of voltages applied to the motors
» output: speed of the belt.
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Avatar control

Y R IAT
\ !§N By

>
Figure: The generated motion with a step function signal, starting with

walking (blue), switching to running (red) and switching back to walking
(blue).

Videos:
Switching between learned speeds
Interpolating (un)seen speed
Constant unseen speed


https://youtu.be/FR-oeGxV6yY
https://youtu.be/AT0HMtoPgjc
https://youtu.be/FuF-uZ83VMw

Regressive dynamics with deep GPs

Instead of coupling f's by encoding the Markov property,
we couple them by coupling the f’s inputs through
another GP with time as input.

y=f(z)+e
x ~GP(0, kz(t,t))
I~ gP(Ov kf(x’ Jj))

Damianou et al., NIPS 2011; Damianou, Titsias and Lawrence, JMLR, 2015



Dynamics

» Dynamics are encoded in the covariance matrix K = k(t, t).

» We can consider special forms for K.

Model individual sequences Model periodic data
| 4 (missa)
> (dog)

> (mocap)


https://www.youtube.com/watch?v=i9TEoYxaBxQ
https://www.youtube.com/watch?v=mUY1XHPnoCU
https://www.youtube.com/watch?v=fHDWloJtgk8

Summary

» Data-driven, model-based approach to real and control
problems

» Gaussian processes: Uncertainty quantification / propagation
gives an advantage

» Deep Gaussian processes: Representation learning 4+ dynamics
learning

» Future work: Deep Gaussian processes + mechanistic
information; consider “real” applications.

Thanks!



Thanks

Thanks to: Neil Lawrence, Michalis Titsias, Carl Henrik Ek, James Hensman,
Cesar Lincoln Mattos, Zhenwen Dai, Javier Gonzalez, Tony Prescott, Uriel

Martinez-Hernandez, Luke Boorman

Thanks to George Karniadakis, Paris Perdikaris for hosting me



BACKUP SLIDES 1: Deep GP Optimization -
variational inference



MAP optimisation?

e » Joint Distr. = p(y|ha)p(ha|h1)p(h1|x)

fi » MAP optimization is extremely problematic
because:
@ e Dimensionality of hs has to be decided a priori

e Prone to overfitting, if h are treated as parameters

f2 e Deep structures are not supported by the model’s
ObjeCtiVe but have to be forced [Lawrence & Moore '07]

@ » We want:

e To use the marginal likelihood as the objective:
f3 marg. lik. = fhz’hl p(y|h2)p(halhi)p(hi|x)

e Further regularization tools.



Marginal likelihood is intractable

Let's try to marginalize out the top layer only:
p(ha) = [ p(ha ()
—//p(h2|f2)2?(f2|h1)p(h1)df2h1
= [ ol [ pltalb)p(n)a ot

Intractable!

Intractability: h; appears non-linearly in p(f2|h;), inside K~ (and
also the determinant term), where K = k(hj, hy).



Solution: Variational Inference

e Similar issues arise for 1-layer models. Solution was given by
Titsias and Lawrence, 2010. A small modification to that
solution does the trick in deep GPs too.

e Extend Titsias’ method for variational learning of inducing
variables in Sparse GPs.

e Analytic variational bound F < p(y|x)
e Approximately marginalise out h

e Hence obtain the approximate posterior g(h)



Inducing points: sparseness, tractability and Big Data
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Inducing points:
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sparseness, tractability and Big Data




Inducing points: sparseness, tractability and Big Data
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iL(/) ‘ ‘ h
» Inducing points originally introduced for faster (sparse) GPs

» But this also induces tractability in our models, due to the
conditional independencies assumed

» Viewing them as global variables
= extension to Big Data [Hensman et al., UAI 2013]



Bayesian regularization

L
F=DataFit  —KL(q(hy)|p(h1)+> H(q(hy))
=2

Regularisation Regularisation
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