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Part 1: GP Take-home messages

I Gaussian processes as infinite dimensional Gaussian
distributions

I ⇒ can be used as priors over functions

I Non-parametric: training data act as parameters

I Uncertainty Quantification

I Learning from scarce data



Notation and graphical models

Graphical models
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I White nodes: Observed variables

I Shaded nodes: Unobserved, or latent
variables.

I Convention: Sometimes the latent
function will be placed next to the arrow;
sometimes I’ll explicitly include the
collection of instantiations f
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Unsupervised learning: GP-LVM
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I If X is unobserved, treat it as a parameter and
optimize over it.

I GP-LVM is interpreted as non-linear, non-parametric
probabilistic PCA (Lawrence, JMLR 2015).

I Objective (likelihood function) is similar to GPs:

p(y|x) =

∫
p(y|f)p(f |x)df = N (y|0,Kff + σ2I)

but now x’s are optimized too.

Neil Lawrence, JMLR, 2005.
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Fitting the GP-LVM
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Fitting the GP-LVM
Figure credits: C. H. Ek
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Fitting the GP-LVM
Figure credits: C. H. Ek
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I Additional difficulty: x’s are also missing!

I Improvement: Invoke the Bayesian methodology to find x’s
too.



Bayesian GP-LVM

Additionally integrate out the latent space.

p(y) =

∫
p(y|f)p(f |x)p(x)dfdx

where
p(x) ∼ N (0, I)

Titsias and Lawrence 2010, AISTATS; Damianou et al. 2015, JMLR



Automatic dimensionality detection

I In general, X = [x1, . . . ,xN ] with x(n) ∈ <Q.
I Automatic dimenionality detection by employing automatic

relevance determination (ARD) priors for the mapping f .
I f ∼ GP(0, kf ) with:

kf

(
x(i),x(j)

)
= σ2 exp

−1

2

Q∑
q=1

w(q)
(
x (i ,q) − x (j ,q)

)2
I Example:
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Sampling from a deep GP

Yf

f

Input

Output

Unobserved



Model

x = given

fh = fh(x) = GP(0, kh(x, x))
h = fh(x) + εh

fy = fy(h) = GP(0, kf(h, h))
y = fy(h) + εy

So: y = fy(fh (x) + εh) + εy

Objective:

p(y|x) =
∫
p(y|fy)p(fy|h)p(h|fh)p(fh|x)dfydfhdh

Damianou and Lawrence, AISTATS 2013; Damianou, PhD Thesis, 2015



Deep GP: Step function (credits for idea to J. Hensman, R. Calandra, M. Deisenroth)

| | | | | | | (standard GP)

| | | | | | | (deep GP - 1 hidden layer)

| | | | | | |

(deep GP - 3 hidden layers)
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Non-linear feature learning

Stacked GP
(nonlinear)

Stacked PCA
(linear)

I Successive warping creates “knots” which act as features.

I Features discovered in one layer remain in the next ones (ie knots

are not un-tied)

f1(f2(f3(x)))

I With linear warpings (stacked PCA) we can’t achieve this effect:

W1(W2(W3x))) = W ′x

Damianou, PhD Thesis, 2015



Deep GP: MNIST example

https://youtu.be/E8-vxt8wxBU (Live sampling video)

https://youtu.be/E8-vxt8wxBU
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Multi-view: Manifold Relevance Determination (MRD)

Multi-view data arise from multiple information sources. These
sources naturally contain some overlapping, or shared signal (since
they describe the same “phenomenon”), but also have some
private signal.
MRD: Model such data using overlapping sets of latent variables

Demo: https://youtu.be/rIPX3CIOhKY Faces, https://youtu.be/xOXnJAAVgLE mocap-silhouette

Damianou et al., ICML 2012; Damianou, PhD Thesis, 2015

https://youtu.be/rIPX3CIOhKY
https://youtu.be/xOXnJAAVgLE
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Deep GPs: Another multi-view example
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Automatic structure discovery summary: ARD and MRD

Tools:

I ARD: Eliminate uncessary nodes/connections

I MRD: Conditional independencies

I Approximating evidence: Number of layers (?)
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More deepGP representation learning examples...

https://youtu.be/s4zATH1TjG8 iCub interaction

https://youtu.be/uSQ0vxLcfVU Faces - autoencoder

https://youtu.be/s4zATH1TjG8
https://youtu.be/uSQ0vxLcfVU
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Dynamical systems examples

Through a model, we wish to learn to:

I perform free simulation by learning patterns coming from the
latent generation process (a mechanistic system we do not
know)

I perform inter/extrapolation in time-series data which are very
high-dimensional (e.g. video)

I detect outliers in data coming from a dynamical system

I optimize policies for control based on a model of the data.



Policy learning

Model-based policy learning

https://www.youtube.com/watch?v=XiigTGKZfks (Cart-pole)

http://mlg.eng.cam.ac.uk/?portfolio=andrew-mchutchon (Unicycle)

Work by: Marc Deisenroth, Andrew McHutchon, Carl Rasmussen

https://www.youtube.com/watch?v=XiigTGKZfks
http://mlg.eng.cam.ac.uk/?portfolio=andrew-mchutchon


NARX model

A standard NARX model considers an input vector xi ∈ RD

comprised of Ly past observed outputs yi ∈ R and Lu past
exogenous inputs ui ∈ R:

xi = [yi−1, · · · , yi−Ly , ui−1, · · · , ui−Lu ]>,

yi = f(xi) + ε
(y)
i , ε

(y)
i ∼ N (ε

(y)
i |0, σ

2
y),

Latent auto-regressive GP model:

xi = f(xi−1, · · · , xi−Lxui−1, · · · , ui−Lu) + ε
(x)
i ,

yi = xi + ε
(y)
i ,

Contribution 1: Simultaneous auto-regressive and

representation learning.

Contribution 2: Latents avoid the feedback of pos-

sibly corrupted observations into the dynamics.

Mattos, Damianou, Barreto, Lawrence, 2016
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Robustness to outliers

Latent auto-regressive GP model:

xi = f(xi−1, · · · , xi−Lxui−1, · · · , ui−Lu) + ε
(x)
i ,

yi = xi + ε
(y)
i ,

ε
(x)
i ∼ N (ε

(x)
i |0, σ

2
x),

ε
(y)
i ∼ N (ε

(y)
i |0, τ

−1
i ), τi ∼ Γ(τi|α, β),

Contribution 3: “Switching-off” outliers by including the above
Student-t likelihood for the noise.

Mattos, Damianou, Barreto, Lawrence, DYCOPS 2016



Robust GP autoregressive model: demonstration

(a) Artificial 1. (b) Artificial 2.

Figure: RMSE values for free simulation on test data with different levels
of contamination by outliers.



(c) Artificial 3. (d) Artificial 4.

(e) Artificial 5.



Going deeper: Deep Recurrent Gaussian Process

yx̄(H )· · ·x̄(2)x̄(1)u

Figure 1: RGP graphical model with H hidden layers.

x̃ is the lagged latent function values augmented with the lagged
exogenous inputs.

Mattos, Dai, Damianou, Barreto, Lawrence, ICLR 2016



Inference is tricky...

log p(y) ≥ −N − L
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Results

Results in nonlinear systems identification:

1. artificial dataset

2. “drive” dataset: by a system with two electric motors that
drive a pulley using a flexible belt.

I input: the sum of voltages applied to the motors
I output: speed of the belt.



RGP GPNARX

MLP-NARX LSTM



RGP GPNARX

MLP-NARX LSTM



Avatar control

Figure: The generated motion with a step function signal, starting with
walking (blue), switching to running (red) and switching back to walking
(blue).

Videos:
https://youtu.be/FR-oeGxV6yY Switching between learned speeds

https://youtu.be/AT0HMtoPgjc Interpolating (un)seen speed

https://youtu.be/FuF-uZ83VMw Constant unseen speed

https://youtu.be/FR-oeGxV6yY
https://youtu.be/AT0HMtoPgjc
https://youtu.be/FuF-uZ83VMw


Regressive dynamics with deep GPs

t

h
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y

f

Instead of coupling f ’s by encoding the Markov property,
we couple them by coupling the f ’s inputs through
another GP with time as input.

y = f(x) + ε

x ∼ GP(0, kx(t, t))

f ∼ GP(0, kf (x, x))

Damianou et al., NIPS 2011; Damianou, Titsias and Lawrence, JMLR, 2015



Dynamics

I Dynamics are encoded in the covariance matrix K = k(t, t).

I We can consider special forms for K.

Model individual sequences Model periodic data

I https://www.youtube.com/watch?v=i9TEoYxaBxQ (missa)

I https://www.youtube.com/watch?v=mUY1XHPnoCU (dog)

I https://www.youtube.com/watch?v=fHDWloJtgk8 (mocap)

https://www.youtube.com/watch?v=i9TEoYxaBxQ
https://www.youtube.com/watch?v=mUY1XHPnoCU
https://www.youtube.com/watch?v=fHDWloJtgk8


Summary

I Data-driven, model-based approach to real and control
problems

I Gaussian processes: Uncertainty quantification / propagation
gives an advantage

I Deep Gaussian processes: Representation learning + dynamics
learning

I Future work: Deep Gaussian processes + mechanistic
information; consider “real” applications.

Thanks!



Thanks

Thanks to: Neil Lawrence, Michalis Titsias, Carl Henrik Ek, James Hensman,

Cesar Lincoln Mattos, Zhenwen Dai, Javier Gonzalez, Tony Prescott, Uriel

Martinez-Hernandez, Luke Boorman

Thanks to George Karniadakis, Paris Perdikaris for hosting me



BACKUP SLIDES 1: Deep GP Optimization -
variational inference



MAP optimisation?

x

h1

f1

h2

f2

y

f3

I Joint Distr. = p(y|h2)p(h2|h1)p(h1|x)

I MAP optimization is extremely problematic
because:

• Dimensionality of hs has to be decided a priori

• Prone to overfitting, if h are treated as parameters

• Deep structures are not supported by the model’s
objective but have to be forced [Lawrence & Moore ’07]

I We want:

• To use the marginal likelihood as the objective:
marg. lik. =

∫
h2,h1

p(y|h2)p(h2|h1)p(h1|x)

• Further regularization tools.



Marginal likelihood is intractable

Let’s try to marginalize out the top layer only:

p(h2) =

∫
p(h2|h1)p(h1)dh1

=

∫ ∫
p(h2|f2)p(f2|h1)p(h1)df2h1

=

∫
p(h2|f2)

[ ∫
p(f2|h1)p(h1)dh1︸ ︷︷ ︸

Intractable!

]
df2

Intractability: h1 appears non-linearly in p(f2|h1), inside K−1 (and
also the determinant term), where K = k(h1,h1).



Solution: Variational Inference

• Similar issues arise for 1-layer models. Solution was given by
Titsias and Lawrence, 2010. A small modification to that
solution does the trick in deep GPs too.

• Extend Titsias’ method for variational learning of inducing
variables in Sparse GPs.

• Analytic variational bound F ≤ p(y|x)

• Approximately marginalise out h

• Hence obtain the approximate posterior q(h)



Inducing points: sparseness, tractability and Big Data
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Inducing points: sparseness, tractability and Big Data

h(1) f (1)

h(2) f (2)

· · · · · ·
h(30) f (30)

h̃(i) u(i)

h(31) f (31)

· · · · · ·
h(N) f (N)

I Inducing points originally introduced for faster (sparse) GPs

I But this also induces tractability in our models, due to the
conditional independencies assumed

I Viewing them as global variables
⇒ extension to Big Data [Hensman et al., UAI 2013]



Bayesian regularization

F = Data Fit −KL (q(h1) ‖ p(h1))︸ ︷︷ ︸
Regularisation

+

L∑
l=2

H (q(hl))︸ ︷︷ ︸
Regularisation
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