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Different aspects of applied machine learning
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Model Construction

• Capacity/Expressiveness

• Interpretability

• Encoding assumptions

• Uncertainty
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Learnability of the model 

• Hierarchical concept learning (MacKay 2002)

• Algorithms: SGD, parallelization

• Numerical stability

• Data size needed/supported

Model Construction

• Capacity/Expressiveness

• Interpretability

• Encoding assumptions

• Uncertainty

GP dominates DNN dominates
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Outline

(D)NN limits to GPs

Deep GPs

Trained DNN inductive biases in (degenerate) GPs

… and rapid adaptation to new tasks
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Part 1/3: Limit properties
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Single layer, infinite width NN à GP
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A general family of probabilistic models

Y = f3(f2(· · · f1(X))), Hi = fi(Hi�1)

A general family of probabilistic models

Y = f3(f2(· · · f1(X))), Hi = fi(Hi�1)

……

Also assuming Gaussian i.i.d noise for weights and biases

Neal 1994; Williams 1997

GP



Conditions for limit results

Independence (i.i.d. noise)

Bounded variance 

#nodes à Inf

Then use multivariate Central Limit Theorem.
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Analytic covariance function (1 layer)
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Lee et al. 2018, Matthews et al. 2018

Single layer network:

Corresponding GP cov. function:



Extension to deep modelsA general family of probabilistic models
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How to generalize the argument for >1 layers?
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A general family of probabilistic models

Y = f3(f2(· · · f1(X))), Hi = fi(Hi�1)

H1 fixed and p2 -> Inf => GP

(Neal 1994)
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A general family of probabilistic models

Y = f3(f2(· · · f1(X))), Hi = fi(Hi�1)

H1 fixed and p2 -> Inf => GP

p1 -> Inf => GP

p1, p2 -> Inf => Deep GP? 

How to generalize the argument for >1 layers?
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A general family of probabilistic models

Y = f3(f2(· · · f1(X))), Hi = fi(Hi�1)

H1 fixed and p2 -> Inf => GP

p1 -> Inf => GP

p1, p2 -> Inf => Deep GP 

Lee et al., Matthews et al.  

How to generalize the argument for >1 layers?



Recursive cov. function formulation
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DGP: Function compositionA general family of probabilistic models

Y = f3(f2(· · · f1(X))), Hi = fi(Hi�1)
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Part 2/3: Deep GPs



Deep Gaussian process 
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Damianou & Lawrence, 2013,  Damianou, PhD Thesis 2015



Variational bound and its properties
Properties of the bound (unsupervised case)

F =

Data fitz }| {
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+

Q

�
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Regularization

+
LX

l=2

H (q(hl))| {z }
Regularization

All terms factorize w.r.t data points [Hensman et al 2013]

Bound on the log marginal likelihood log p(y)
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Sampling from a Deep GP

Yf
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Input

Output

Unobserved

X

H

Y
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Feature learning

Features are learned as “knots” in the latent space, carried over from layer to layer.
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Feature learning

Features are learned as “knots” in the latent space, carried over from layer to layer.
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Narrow intermediate layers do give hierarchical feature learning.



DNN vs DGP

Shallow NN à GP

Deep NN     à GP
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DNN vs DGP

Shallow NN à GP

Deep NN     à GP
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Deep GP > Deep NN?
(Discussion)



Analysing DGPs

Limit properties
Distribution of derivatives in deep models [Duvenaud et al. ‘14]
How are effective depth and ergodicity connected? [Dunlop et al. ’18] 

Few layers analysis through approximation:
DGP moments and approximation of DGP with GP [Lu et al. ‘19]
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Analysing DGPs

Limit properties
Distribution of derivatives in deep models [Duvenaud et al. ‘14]
How are effective depth and ergodicity connected? [Dunlop et al. ’18] 

Few layers analysis through approximation:
DGP moments and approximation of DGP with GP [Lu et al. ‘19]

Discussion: What does a DGP with > 2 layers mean?
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Part 3/3: From DNNs to (degenerate) GPs
(i.e. Bayesian generalized linear model)



Why?

Improve learnability (e.g. hierarchical features) 
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Why?

Improve learnability (e.g. hierarchical features) 

Leverage DNN research / algorithms
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Why?

Improve learnability (e.g. hierarchical features) 

Leverage DNN research / algorithms

In industry there are *loads* of DNNs trained (and you can’t convince
them to train GPs instead). You could reuse the knowledge stored in 
them. 
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GP        DNN beyond initialization (and practical use)

Initialization During training Convergence

Neal ‘94
Lee et al. ‘18
Matthews et al. ‘18

Jacot et al. ‘18 NTK
Lee et al. ‘19
Hayou et al. ‘19

Maddox et al. ‘19
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Initialization During training Convergence

Neal ‘94
Lee et al. ‘18
Matthews et al. ‘18 

Jacot et al. ‘18 NTK
Lee et al. ‘19
Hayou et al. ‘19

Maddox et al. ‘19 

W. Maddox, S. Tang, P. Moreno, A. Wilson, A. Damianou: Fast Adaptation with Linearized Neural Networks. 2019

Model: A degenerate GP from DNNs obtained at convergence.

GP        DNN beyond initialization (and practical use)



Motivation

How can we can get the (desired) DNN properties in GPs? 
• Need to look at convergence to leverage DNN learning
• Transfer learning from DNN to GP
• Generalize to transfer learning for multiple tasks
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Motivation

How can we can get the (desired) DNN properties in GPs? 
• Need to look at convergence to leverage DNN learning
• Transfer learning from DNN to GP
• Generalize to transfer learning for multiple tasks

Combines:
• DNN learnability from #nodes < Inf (training) 
• GP uncertainty & analytic predictions (inference)
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DNN training dynamics in GD

df(x)
dt = �⌘J✓(x)>J✓(x)rf log p(y|f, x)

I The NTK governs the dynamics of f throughout the GD training of ✓.

I Taylor expand: f(x, ✓) ⇡ f(x, ✓0) + J✓(x, ✓0)T (✓ � ✓0)

I Linear in ✓, non-linear in inputs (because of J)

I Linear model using feature map (kernel) J✓(x, ✓0)>J✓(x, ✓0)

Neural Tangent Kernel (NTK)

Lee et al. arXiv:1902.06720 
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DNN -> GP through NTK
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• For linearized networks around θ_init, the network output becomes a linear 
model with NTK.

• For non-linearized networks and small learning rate, same behavior arises with 
GD.
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• For linearized networks around θ_init, the network output becomes a linear 
model with NTK.

• For non-linearized networks and small learning rate, same behavior arises with 
GD.

• We leverage this to linearize the network at convergence, θ_final, and use it 
within a GP with the NTK. 



DNN -> GP through NTK
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• For linearized networks around θ_init, the network output becomes a linear 
model with NTK.

• For non-linearized networks and small learning rate, same behavior arises with 
GD.

• We leverage this to linearize the network at convergence, θ_final, and use it 
within a GP with the NTK. 

• This also allows us to do DNN transfer learning analytically with GPs: we transfer 
neural network parameters (= kernel parameters) across tasks.  



Model

I Fit DNN’s parameters ✓ on data X using the Jacobian: J(X; ✓) (i.e. SGD).

I Consider a GP with finite NTK kernel: k(x, x0) = J(x; ✓)>J(x0; ✓).
No GP training required.

I Predictions: k(x⇤,X) = J(x⇤; ✓)TJ(X; ✓) etc.

I Equivalent to Bayesian generalized linear model with Jacobians as features.
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DNN adaptation without fine-tuning

If #tasks T > 1:

I Learn kernel hyperparameters ✓0 in source task

I Transfer kernel hyperparameters to all other thasks⇤: ✓1,··· ,T = ✓0
) closed form adaptation (in regression) with uncertainty!

I J depends on the whole network, not just the last layer. Also tells us about
convergence conditions.

⇤see also Fisher Matrix similarity assumptions by Liang et al. 17, Achille et al. 19
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Transfer learning for precipitation data 
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Other relevant works

Perrone et al. 2018: Explicitly uses output features of DNN (we use NTK 
with Jacobian information from all layers)

Wilson et al. 2015: DKL (whole NN embedded in kernel) 

Jaakkola et al. 1998 and others: gradients as features

12/19/19 A. Damianou 59



Thanks!

Questions?
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Appendix
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