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A standard neural network
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I Define: φj = φ(xj) and fj = wjφj (ignore bias for now)

I Once we’ve defined all w’s with back-prop, then f (and the whole network)
becomes deterministic.

I What does that imply?



Trained neural network is deterministic. Implications?

I Generalization: Overfitting occurs. Need for ad-hoc invention of regularizers:
dropout, early stopping...

I Data generation: A model which generalizes well, should also understand -or even
be able to create (”imagine”)- variations.

I No predictive uncertainty: Uncertainty needs to be propagated across the model
to be reliable.



Need for uncertainty

I Reinforcement learning

I Critical predictive systems

I Active learning

I Semi-automatic systems

I Scarce data scenarios

I ...



Bayesian approach

I Three ways of introducing uncertainty / noise in a NN:

I Treat weights w as distributions

I Stochasticity in the warping function φ

I Bayesian non-parametrics applied to DNNs can achieve both of the above
simultaneously, e.g. a Deep Gaussian process

I Result: Bayesian Neural Network (BNN)
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BNN with priors on its weights
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BNN with priors on its weights
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Probabilistic re-formulation

I DNN: y = g(W,x) = w1ϕ(w2ϕ(. . .x))

I Training minimizing loss:

argmin
W

1

2

N∑
i=1

(g(W, xi)− yi)2︸ ︷︷ ︸
fit

+λ
∑
i

‖ wi ‖2︸ ︷︷ ︸
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax
W

log p(y|x,W)︸ ︷︷ ︸
fit

+ log p(W)︸ ︷︷ ︸
regularizer

where p(y|x,W) ∼ N and p(W) ∼ Laplace

I Optimization still done with back-prop (i.e. gradient descent).



Probabilistic re-formulation

I DNN: y = g(W,x) = w1ϕ(w2ϕ(. . .x))

I Training minimizing loss:

argmin
W

1

2

N∑
i=1

(g(W, xi)− yi)2︸ ︷︷ ︸
fit

+λ
∑
i

‖ wi ‖2︸ ︷︷ ︸
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax
W

log p(y|x,W)︸ ︷︷ ︸
fit

+ log p(W)︸ ︷︷ ︸
regularizer

where p(y|x,W) ∼ N and p(W) ∼ Laplace

I Optimization still done with back-prop (i.e. gradient descent).



Probabilistic re-formulation

I DNN: y = g(W,x) = w1ϕ(w2ϕ(. . .x))

I Training minimizing loss:

argmin
W

1

2

N∑
i=1

(g(W, xi)− yi)2︸ ︷︷ ︸
fit

+λ
∑
i

‖ wi ‖2︸ ︷︷ ︸
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax
W

log p(y|x,W)︸ ︷︷ ︸
fit

+ log p(W)︸ ︷︷ ︸
regularizer

where p(y|x,W) ∼ N and p(W) ∼ Laplace

I Optimization still done with back-prop (i.e. gradient descent).



Integrating out weights

I Define: D = (x, y)

I Remember Bayes’ rule:

p(w|D) =
p(D|w)p(w)

p(D) =
∫
p(D|w)p(w)dw

I For Bayesian inference, weights need to also be integrated out. This gives us a
properly defined posterior on the parametres.



Bayesian Inference

Remember: Separation of Model and Inference



Inference

I p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in
which w appears through g.

I Attempt at variational inference:

KL (q(w; θ) ‖ p(w|D))︸ ︷︷ ︸
minimize

= log(p(D))− L(θ)︸︷︷︸
maximize

where
L(θ) = Eq(w;θ)[log p(D,w)]︸ ︷︷ ︸

F

+H [q(w; θ)]

I Term in red is still problematic. Solution: MC.

I Such approaches can be formulated as black-box inferences.
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Black-box VI



Black-box VI (github.com/blei-lab/edward)



Deep Gaussian processes

I Uncertainty about parameters: Check. Uncertainty about structure?

I Deep GP simultaneously brings in:
I prior on “weights”

I input/latent space is kernalized

I stochasticity in the warping



Priors on weights (what we saw before)
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From NN to GP
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I NN: H2 = W2φ(H1)

I GP: φ is ∞−dimensional so:
H2 = f2(H1; θ2) + ε

I NN: p(W)

I GP: p(f(·))

I VAE can be seen as a special
case of this
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From NN to GP
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I Real world perfectly described by

unobserved latent variables: Ĥ

I But we only observe noisy
high-dimensional data: Y

I We try to interpret the world
and infer the latents: H ≈ Ĥ

I Inference:
p(H|Y) = p(Y|H)p(H)

p(Y)



Face generation

https://youtu.be/rIPX3CIOhKY Face Generation

https://youtu.be/rIPX3CIOhKY


What does “prior over functions” mean?



Samples from a 1-D Gaussian
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Deep Gaussian processes
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I Define a recursive stacked construction

f(x)→ GP

fL(fL−1(fL−2 · · · f1(x))))→ deep GP

Compare to:

ϕ(x)>w→ NN

ϕ(ϕ(ϕ(x)>w1)
> . . .wL−1)

>wL → DNN



Two-layered DGP
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An example where uncertainty propagation matters: Recurrent learning.



Dynamics/memory: Deep Recurrent Gaussian Process



Avatar control

Figure: The generated motion with a step function signal, starting with walking (blue),
switching to running (red) and switching back to walking (blue).

Videos:
https://youtu.be/FR-oeGxV6yY Switching between learned speeds

https://youtu.be/AT0HMtoPgjc Interpolating (un)seen speed

https://youtu.be/FuF-uZ83VMw Constant unseen speed

https://youtu.be/FR-oeGxV6yY
https://youtu.be/AT0HMtoPgjc
https://youtu.be/FuF-uZ83VMw


RGP GPNARX

MLP-NARX LSTM



Summary

I Motivation for probabilistic and Bayesian reasoning

I Three ways of incorporating uncertainty in DNNs

I Inference is more challenging when uncertainty has to be propagated

I Connection between Bayesian and “traditional” NN approaches
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