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A standard neural network

» Define: ¢; = ¢(x;) and f; = w;¢p; (ignore bias for now)
» Once we've defined all w's with back-prop, then f (and the whole network)
becomes deterministic.

» What does that imply?



Trained neural network is deterministic. Implications?

» Generalization: Overfitting occurs. Need for ad-hoc invention of regularizers:
dropout, early stopping...

» Data generation: A model which generalizes well, should also understand -or even
be able to create ("imagine” )- variations.

» No predictive uncertainty: Uncertainty needs to be propagated across the model
to be reliable.



Need for uncertainty
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Reinforcement learning

v

Critical predictive systems

v

Active learning
» Semi-automatic systems

Scarce data scenarios
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Bayesian approach

» Three ways of introducing uncertainty / noise in a NN:

» Treat weights w as distributions
» Stochasticity in the warping function ¢

» Bayesian non-parametrics applied to DNNs can achieve both of the above
simultaneously, e.g. a Deep Gaussian process

» Result: Bayesian Neural Network (BNN)
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BNN with priors on its weights




BNN with priors on its weights




Probabilistic re-formulation

> DNN: y = g(W,x) = wip(wap(. .. x))
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Probabilistic re-formulation
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» Equivalent probabilistic view for regression, maximizing posterior probability:
arg max log p(y|x, W) + log p(W)
W e —m4m ~——

fit regularizer

where p(y|x, W) ~ N and p(W) ~ Laplace

» Optimization still done with back-prop (i.e. gradient descent).



Integrating out weights

» Define: D = (x,y)

» Remember Bayes' rule:

p(D]w)p(w)
p(D) = [ p(D|w)p(w)dw

p(w|D) =

» For Bayesian inference, weights need to also be integrated out. This gives us a
properly defined posterior on the parametres.



Bayesian Inference

Remember: Separation of Model and Inference



Inference

» p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in
which w appears through g.
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» Term in red is still problematic. Solution: MC.

» Such approaches can be formulated as black-box inferences.



Black-box VI

Black-Box Stochastic Variational Inference
in Five Lines of Python

David Duvenaud Ryan P. Adams
dduvenaud@seas.harvard.edu rpalseas.harvard.edu
Harvard University Harvard University
Abstract

Several large software engineering projects have been undertaken to support
black-box inference methods. In contrast, we emphasize how easy it is to con-
struct scalable and easy-to-use automatic inference methods using only automatic
differentiation. We present a small function which computes stochastic gradients
of the evidence lower bound for any differentiable posterior. As an example, we
perform stochastic variational inference in a deep Bayesian neural network.



Black-box VI (github.com//blei-lab/edward)

# MODEL

W_0 = Normal(loc=tf.zeros([D, 10]1), scale=tf.ones([D, 10]))
W_1 = Normal(loc=tf.zeros([10, 10]), scale=tf.ones([10, 10]))
W_2 = Normal(loc=tf.zeros([10, 1]), scale=tf.ones([10, 1]))
b_0 = Normal(loc=tf.zeros(10), scale=tf.ones(10))

b_1 = Normal(loc=tf.zeros(10), scale=tf.ones(10))

b_2 = Normal(loc=tf.zeros(1), scale=tf.ones(1))

X = tf.placeholder(tf.float32, [N, DI)
Normal(loc=neural_network(X), scale=0.1 % tf.ones(N))

# INFERENCE
qW_0 = Normal(loc=tf.Variable(tf.random_normal([D, 101)),
scale=tf.nn.softplus(tf.variable(tf.random_normal([D, 101))))

gb_2 = Normal(loc=tf.Variable(tf.random_normal([1])),
scale=tf.nn.softplus(tf.Variable(tf.random_normal([1]))))

inference = ed.KLgp({W_0: qW_0, b_0: gb_0,

W_1: gw_1, b_1: gb_1,

W_2: gWw_2, b_2: gb_2}, data={X: X_train, y: y_train})
inference. run()



Deep Gaussian processes

» Uncertainty about parameters: Check. Uncertainty about structure?

» Deep GP simultaneously brings in:
> prior on “weights”
» input/latent space is kernalized

» stochasticity in the warping



Priors on weights (what we saw before)



From NN to GP

( > NN: Hy = Wyo(H;)
« » GP: ¢ is co—dimensional so:

G /\ Hy = fo(Hy;00) + ¢

(:? o



v

NN: H2 = WQQS(Hl)

v

From NN to GP
GP: ¢ is co—dimensional so:

“ G N Hy = fo(Hi;02) + ¢
NN: p(W)
<.
‘\9
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> GP:p(f(-))
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NN: Hy = Wap(H;)

v

GP: ¢ is co—dimensional so:

From NN to GP
G N Hy = fo(Hy;00) + ¢

«Q
: NN: p(W)
=\ > GP: p(/ ()
. VAE can be seen as a special
case of this
)

v

v



From NN to GP

)

> Real world perfectly described by
unobserved /atent variables: H

<

/\ » But we only observe noisy

G high-dimensional data: Y

» We try to interpret the world

/\ and infer the latents: H ~ H
G
» Inference: S
_ p(YH)p(H
PHY) =225y



Face generation

S AT EIC OIS E) Face Generation


https://youtu.be/rIPX3CIOhKY

What does “prior over functions” mean?



Samples from a 1-D Gaussian
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Deep Gaussian processes

» Define a recursive stacked construction

f(x) — GP

Jo(fo—1(fr—2--- f1(x)))) — deep GP

Compare to:

3 o(x)"w — NN

(=

@(SD(SO(X)TWOT e WL—1)TWL — DNN



Two-layered DGP

Input

fi

Unobserved




An example where uncertainty propagation matters: Recurrent learning.



Dynamics/memory: Deep Recurrent Gaussian Process
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Avatar control

IR

Figure: The generated motion with a step function signal, starting with walking (blue),
switching to running (red) and switching back to walking (blue).

Videos:
Switching between learned speeds
Interpolating (un)seen speed
Constant unseen speed


https://youtu.be/FR-oeGxV6yY
https://youtu.be/AT0HMtoPgjc
https://youtu.be/FuF-uZ83VMw
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Summary

v

Motivation for probabilistic and Bayesian reasoning

v

Three ways of incorporating uncertainty in DNNs

v

Inference is more challenging when uncertainty has to be propagated

v

Connection between Bayesian and “traditional” NN approaches
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