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Motivating example: cassava disease classification
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Mwebaze et al. 2019: https://arxiv.org/pdf/1908.02900.pdf

https://arxiv.org/pdf/1908.02900.pdf
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Deep Learning in a nutshell
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Create model Optimize model

m.fit(data)m = Input(*img_size)
m = Dense(d)(m)  # contains Weights
m = Conv()  (m)

     ...



Loss landscape
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▪ Optimization: find a setting of 
parameters that minimize the loss.

▪ Gradients used to navigate the loss 
landscape.

▪ Non-convexity and high dimensionality 
cause issues.
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Img credits: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/


Lesson 1: Initialization matters!
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Bad initializations:
- Close to local minima
- Areas where gradients vanish/explode

BAD 
initialization

GOOD  
initialization

+ +



Lesson 1: Initialization matters!
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Bad initializations:
- Close to local minima
- Areas where gradients vanish/explode

Rules of thumb :
- Mean of activations ≈ 0
- Activation variance across layers ≈ same

BAD 
initialization

GOOD  
initialization

+ +

*

* Glorot & Bengio 2010



Lesson 2: Navigate the loss landscape cleverly
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▪ Adaptive learning rate 
   

High α
 Low αW -= α(t) * W_grad



Lesson 2: Navigate the loss landscape cleverly
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▪ Adaptive learning rate 
   

▪ Momentum No momentum

Momentum

High α
 Low αW -= α(t) * W_grad

W -= α * W_grad
   + b * W_grad_prev



Lesson 3: Improve properties of loss landscape 
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▪ Batch-normalization  
m = BatchNormalization()(m)

Image:Resnet



Lesson 4: Avoid overfitting
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Doesn’t mean we have to 
smooth data; 
it means that in the 
absence of “strong” 
evidence we shouldn’t 
make “strong” inferences. 



Lesson 4: Avoid overfitting  [ Early stopping ]
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Early stopping point

Validation loss 

Training loss
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Lesson 4: Avoid overfitting  [ Dropout ]

Dropout

▪ Randomly drop units 
during training

▪ Prevents unit 
co-adaptation and 
overfitting
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Lesson 4: Avoid overfitting  [ Dropout ]

Dropout

▪ Randomly drop units 
during training

▪ Prevents unit 
co-adaptation and 
overfitting

m = Input(*img_size)
m = Dense(d) (m)  
m = Dropout(0.5)(m)

   ...



Lesson 5: Transfer learning
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▪ Solves many of the issues because it starts from a “good” parameter setting 
that works well for another, related task.



15github.com/amzn/xfer

https://github.com/amzn/xfer


16github.com/amzn/xfer

Transfer learning with feature extraction

https://github.com/amzn/xfer
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Failure cases



Failure cases: unfamiliar poses 

18* Alcorn et al. 2019
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▪ Real data is messy (e.g. poor focus images)

▪ Real data is often limited 

Failure cases: data issues
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Failure cases: unexplainable predictions

Quinn et al. 2016: http://proceedings.mlr.press/v56/Quinn16.pdf

http://proceedings.mlr.press/v56/Quinn16.pdf


Other practical issues regarding learning

▪ Gradient properties (exploding, vanishing)

▪ Scalability & Storage (huge networks)

▪ Numerical issues

▪ Mismatch between training & test distribution

▪ Data inefficiency

▪ Continual learning

▪ ...
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Take home messages
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▪ Understanding the loss landscape

▪ Initialization matters

▪ Navigate the loss landscape cleverly (adaptive learning rate; momentum)

▪ Make loss landscape better behaving 

▪ Avoiding overfitting (early stopping; dropout)

▪ Transfer learning  

▪ Consider failure cases


