Introduction to deep transfer learning with Xfer

Andreas Damianou

Amazon, Cambridge UK

Talk at the University of Leeds, 8 March 2019

- Deep neural networks quick reminder
- Transfer learning intro
- ► Xfer
 - Meta-learning
- Considerations

Notebook: <u>adamian.github.io/talks/Damianou DL tutorial 19.ipynb</u>

Xfer: <u>github.com/amzn/xfer/</u>

► Blog: <u>link.medium.com/De5BXPJ9TT</u>

A more complete tutorial on deep learning: <u>adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf</u>

Deep Neural Networks intro

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a *weight vector* \mathbf{w}_l . E.g. for 2 layers:

$$f_{\mathsf{net}} = h_2(h_1(\mathbf{x}; \mathbf{w}_1); \mathbf{w}_2).$$

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a *weight vector* \mathbf{w}_l . E.g. for 2 layers:

$$f_{\mathsf{net}} = h_2(h_1(\mathbf{x}; \mathbf{w}_1); \mathbf{w}_2).$$

Generally $f_{net} : \mathbf{x} \mapsto \mathbf{y}$ with:

$$\mathbf{h}_1 = \varphi(\mathbf{x}\mathbf{w}_1 + b_1)$$
$$\mathbf{h}_2 = \varphi(\mathbf{h}_1\mathbf{w}_2 + b_2)$$
$$\dots$$
$$\hat{\mathbf{y}} = \varphi(\mathbf{h}_{L-1}\mathbf{w}_L + b_L)$$

 ϕ is the (non-linear) activation function.

3/11/19

- We have our function approximator $f_{net}(x) = \hat{y}$
- We have to define our loss (objective function) to relate this function outputs to the observed data.
- E.g. squared difference $\sum_n (y_n \hat{y}_n)^2$ or cross-entropy

Probabilistic re-formulation

• Training minimizing loss:

$$\arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} (f_{\mathsf{net}}(\mathbf{w}, x_i) - y_i)^2 + \lambda \sum_{i \in \mathbb{N}} \| \mathbf{w}_i \|$$
fit
regularizer

Equivalent probabilistic view for regression, maximizing posterior probability:

$$\arg \max_{\mathbf{w}} \underbrace{\log p(\mathbf{y} | \mathbf{x}, \mathbf{w})}_{\text{fit}} + \underbrace{\log p(\mathbf{w})}_{\text{regularizer}}$$

where $p(\mathbf{y}|\mathbf{x}, \mathbf{w}) \sim \mathcal{N}$ and $p(\mathbf{w}) \sim \text{Laplace}$

Optimization still done with back-prop (i.e. gradient descent).

Probabilistic re-formulation

• Training minimizing loss:

$$\arg\min_{\mathbf{w}} \underbrace{\frac{1}{2} \sum_{i=1}^{N} (f_{\mathsf{net}}(\mathbf{w}, x_i) - y_i)^2}_{\mathsf{fit}} + \underbrace{\lambda \sum_{i} \| \mathbf{w}_i \|}_{\mathsf{regularizer}}$$

• Equivalent probabilistic view for regression, maximizing posterior probability:

$$\arg \max_{\mathbf{w}} \underbrace{\log p(\mathbf{y} | \mathbf{x}, \mathbf{w})}_{\text{fit}} + \underbrace{\log p(\mathbf{w})}_{\text{regularizer}}$$

where $p(\mathbf{y}|\mathbf{x}, \mathbf{w}) \sim \mathcal{N}$ and $p(\mathbf{w}) \sim \text{Laplace}$

• Optimization still done with back-prop (i.e. gradient descent).

Graphical depiction

Derivative wrt w_0

$$\begin{aligned} \frac{\vartheta(\mathbf{h}_{2} - \mathbf{y})^{2}}{\vartheta\mathbf{w}_{0}} &= -2\frac{1}{2}(\mathbf{h}_{2} - \mathbf{y})\frac{\vartheta\mathbf{h}_{2}}{\vartheta\mathbf{w}_{0}} = \\ &= (\mathbf{y} - \mathbf{h}_{2})\frac{\vartheta\phi(\mathbf{h}_{1}\mathbf{w}_{1})}{\vartheta\mathbf{h}_{1}\mathbf{w}_{1}}\frac{\vartheta\mathbf{h}_{1}\mathbf{w}_{1}}{\vartheta\mathbf{h}_{1}}\frac{\vartheta\mathbf{h}_{1}}{\vartheta\mathbf{w}_{0}} = \\ &= \epsilon_{2} g_{1} \mathbf{w}_{1}^{T} \frac{\vartheta\phi(\mathbf{x}\mathbf{w}_{0})}{\mathbf{x}\mathbf{w}_{0}}\frac{\vartheta\mathbf{x}\mathbf{w}_{0}}{\vartheta\mathbf{w}_{0}} = \\ &= \epsilon_{2} g_{1} \mathbf{w}_{1}^{T} \frac{\vartheta\phi(\mathbf{x}\mathbf{w}_{0})}{\frac{\vartheta\mathbf{x}\mathbf{w}_{0}}{\mathbf{y}_{0}}} \mathbf{x}^{T} \end{aligned}$$

Propagation of error is just the chain rule.

Optimization & Implementation

GOTO notebook!!

Automatic differentiation

Example: $f(x_1, x_2) = x_1 \sqrt{\log \frac{x_1}{\sin(x_2^2)}}$ has symbolic graph:

(image: sanyamkapoor.com)

Back to notebook!

Taming the dragon

How to make your neural network do what you want it to do? \leftarrow my neural network

 \leftarrow me

Probabilistic re-formulation

• Training minimizing loss:

$$\arg\min_{\mathbf{w}} \underbrace{\frac{1}{2} \sum_{i=1}^{N} (f_{\mathsf{net}}(\mathbf{w}, x_i) - y_i)^2}_{\mathsf{fit}} + \underbrace{\lambda \sum_{i} \| \mathbf{w}_i \|}_{\mathsf{regularizer}}$$

• Equivalent probabilistic view for regression, maximizing posterior probability:

$$\arg \max_{\mathbf{w}} \underbrace{\log p(\mathbf{y} | \mathbf{x}, \mathbf{w})}_{\text{fit}} + \underbrace{\log p(\mathbf{w})}_{\text{regularizer}}$$

where $p(\mathbf{y}|\mathbf{x}, \mathbf{w}) \sim \mathcal{N}$ and $p(\mathbf{w}) \sim \text{Laplace}$

• Optimization still done with back-prop (i.e. gradient descent).

We saw that optimizing the parameters is a challenge. Why not marginalize them out completely?

$$D \coloneqq (\mathbf{x}, \mathbf{y})$$

$$p(w|D) = \frac{p(D|w)p(w)}{p(D) = \int p(D|w)p(w)\mathsf{d}w}$$

Inference

- ▶ p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in which w appears through g.
- ► Attempt at *variational inference*:

$$\underbrace{\mathsf{KL}\left(q(w;\theta) \, \| \, p(w|D)\right)}_{\mathsf{minimize}} = \log(p(D)) - \underbrace{\mathcal{L}(q(w;\theta))}_{\mathsf{maximize}}$$

where

$$\mathcal{L}(q(w;\theta)) = \underbrace{\mathbb{E}_{q(w;\theta)}[\log p(D,w)]}_{\mathcal{F}} + \mathbb{H}\left[q(w;\theta)\right]$$

- ► Term in red is still problematic. Solution: MC.
- Such approaches can be formulated as *black-box* inferences.

Inference

- ▶ p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in which w appears through g.
- ► Attempt at *variational inference*:

$$\underbrace{\mathsf{KL}\left(q(w;\theta) \parallel p(w|D)\right)}_{\text{minimize}} = \log(p(D)) - \underbrace{\mathcal{L}(q(w;\theta))}_{\text{maximize}}$$
where
$$\mathcal{L}(q(w;\theta)) = \underbrace{\mathbb{E}_{q(w;\theta)}[\log p(D,w)]}_{\mathcal{F}} + \mathbb{H}\left[q(w;\theta)\right]$$

► Term in red is still problematic. Solution: MC.

Such approaches can be formulated as *black-box* inferences.

Inference

- ▶ p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in which w appears through g.
- ► Attempt at *variational inference*:

$$\underbrace{\mathsf{KL}\left(q(w;\theta) \| p(w|D)\right)}_{\text{minimize}} = \log(p(D)) - \underbrace{\mathcal{L}(q(w;\theta))}_{\text{maximize}}$$

where
$$\mathcal{L}(q(w;\theta)) = \mathbb{E}_{q(w;\theta)}[\log p(D,w)] + \mathbb{H}\left[q(w;\theta)\right]$$

 \mathcal{F}

Such approaches can be formulated as *black-box* inferences.

BNN with priors on its weights

 \Rightarrow

BNN with priors on its weights

 \Rightarrow

Bayesian neural network (what we saw before)

From NN to GP

• • •

- $\blacktriangleright \mathsf{NN}: \mathbf{H}_2 = \mathbf{W}_2 \phi(\mathbf{H}_1)$
- GP: ϕ is ∞ -dimensional so: $\mathbf{H}_2 = f_2(\mathbf{H}_1; \theta_2) + \epsilon$
- \blacktriangleright NN: $p(\mathbf{W})$
- GP: $p(f(\cdot))$

Deep Gaussian processes. A. Damianou, N. Lawrence, 2013

From NN to GP

• • •

- $\blacktriangleright \mathsf{NN}: \mathbf{H}_2 = \mathbf{W}_2 \phi(\mathbf{H}_1)$
- GP: ϕ is ∞ -dimensional so: $\mathbf{H}_2 = f_2(\mathbf{H}_1; \theta_2) + \epsilon$
- NN: $p(\mathbf{W})$
- GP: $p(f(\cdot))$

Deep Gaussian processes. A. Damianou, N. Lawrence, 2013

Transfer Learning

Motivations for TL: DNN training requires expertise

Leveraging the power of DNNs even without too much expertise

Motivations for TL: Leverage commonalities in data

Why does Transfer Learning work?

Back to our transfer example

Target Task (Few images)

Predictions using a pre-trained model (no transfer)

remote control

hook

horizontal bar

Predictions using Xfer

github.com/amzn/xfer

Deep Transfer Learning for MXNet

build passing docs passing *codecov* 96% pypi v1.0.0 license Apache-2.0

Website | Documentation | Contribution Guide

What is Xfer?

Xfer is a library that allows quick and easy transfer of knowledge^{1,2,3} stored in deep neural networks implemented in MXNet. Xfer can be used with data of arbitrary numeric format, and can be applied to the common cases of image or text data.

Xfer Repurposers

Three kinds of repurposers:

- Meta-model based
- Fine-tuning based
- Multi-task and meta-learning based (learning to learn)

Given: (source task)


```
repurposer = xfer.LrRepurposer(source_model, feature_layer_names=['fc2','fc3'])
```

repurposer.repurpose(train_iterator)

predictions = repurposer.predict_label(test_iterator)

Fine-tuning based repurposing

Fine-tuning based repurposing

Fine-tuning based repurposing

mh = xfer.model_handler.ModelHandler(source_model)

conv1 = mxnet.sym.Convolution(name='convolution1', kernel=(20,20), num_filter=64)

mh.add_layer_bottom([conv1])

mod.fit(iterator, num_epoch=5)

Transfer through meta-learning

Learning to learn

Related to multi-task learning

Our approach: transfer knowledge across learning processes

- Transfer learning in a higher level of abstraction
- Transfer learning among typically many tasks
- All task sub-models act as source and target models

• Optimize θ such that on average θ_i^* are as best as possible.

MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average θ_i^* are as best as possible.

• θ and θ_i^* are in the same space. So we can backprop.

MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average θ_i^* are as best as possible.

• θ and θ_i^* are in the same space. So we can backprop.

MAML approach by Chelsea Finn et al. 2017

$$\min_{\theta} \sum_{\tau_i \sim p(\tau)} \mathcal{L}_{\tau_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau_i}(f_{\theta})})$$

Meta-learning optimization loop

Start with initial θ

- ▶ for *meta_steps = 1, 2....* :
 - Take a batch of instances per task
 - Update θ_1 , θ_2 , ... $\theta_\tau~$ using each task's loss function individually
 - Update θ such that the average of all tasks' losses is minimized

• Optimize θ such that on average θ_i^* are as best as possible.

• θ and θ_i^* are in the same space. So we can backprop.

MAML approach by Chelsea Finn et al. 2017

$$\min_{\theta} \sum_{\tau_i \sim p(\tau)} \mathcal{L}_{\tau_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau_i}(f_{\theta})})$$

- Optimize θ such that on average θ_i^* is as best as possible and $\theta \rightarrow \theta_i^*$ is as short as possible.
- θ and θ_i^* are in the same space. So we can backprop.

Leap approach by Flennerhag et al. 2019 (in **Xfer** soon!)

$$\min_{\theta} \sum_{\tau_i \sim p(\tau)} \mathcal{L}_{\tau_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\tau_i}(f_{\theta})}) + \gamma_{\tau_i}(\theta)$$

Leap balances gradient paths from all tasks...

... to minimize the expected gradient path.

Xfer meta-learning (available soon!)

import xfer.contrib.xfer_leap as leap

Imr = leap.leap_meta_repurposer.LeapMetaRepurposer(model, num_meta_steps, num_epochs)

lmr.repurpose(train_data_all)

Metastep: 0, Num	tasks: 4,	Mean Loss:	: 57.061	
Metastep:	1, Task:	0, Initial	l Loss: 778.318, Final Loss: 25.655, Loss delta: -752.663	
Metastep:	1, Task:	1, Initial	l Loss: 1123.906, Final Loss: 60.993, Loss delta: -1062.9	13
Metastep:	1, Task:	2, Initial	l Loss: 620.399, Final Loss: 38.558, Loss delta: -581.841	
Metastep:	1, Task:	3, Initial	l Loss: 1251.979, Final Loss: 46.972, Loss delta: -1205.0	06

Metastep: 8, Num tasks: 4, Mean Loss: 27.376 Metastep: 9, Task: 0, Initial Loss: 389.985, Final Loss: 13.036, Loss delta: -376.949 Metastep: 9, Task: 1, Initial Loss: 654.023, Final Loss: 34.885, Loss delta: -619.138 Metastep: 9, Task: 2, Initial Loss: 314.407, Final Loss: 21.424, Loss delta: -292.983 Metastep: 9, Task: 3, Initial Loss: 958.127, Final Loss: 37.829, Loss delta: -920.299

lmr.meta_logger.plot_losses()

3/11/19

Data properties considerations

Source task:

$$\begin{array}{c} X_{S} & \xrightarrow{Model_{S}} & Y_{S} \\ \end{array} \\ X_{T} & \xrightarrow{Model_{T}} & Y_{T} \end{array}$$

Target task:

Transfer learning: Use $Model_S$ to improve $Model_T$

Setting Description		Considerations
$\mathcal{X}_S eq \mathcal{X}_T$	Different input domains	Domain adaptation
$\mathcal{Y}_S eq \mathcal{Y}_T$	Different label spaces	Multi-task learning might be preferable
$p(\mathbf{Y}_S) \neq p(\mathbf{Y}_T)$	Dissimilar output distribution	Transferring lower layers preferable
$p(\mathbf{X}_S) \neq p(\mathbf{X}_T)$	Dissimilar input distribution	Transferring higher layers preferable
$ \mathbf{Y}_T \ll \mathbf{Y}_S $	Much fewer labelled data in T	Data efficient TL required
$ \mathbf{V}_{\pi} \gg \mathbf{V}_{\alpha} $	Much fewer labelled data in S	Take care of catastrophic forgetting
	WIGH ICWCI TAUCHEU Gata III D	or train T from scratch

Conclusions

- NNs are mathematically simple; challenge is how to optimize them.
- Data efficiency? Uncertainty Calibration? Interpretability? Safety?
- Bayesian NNs solve *some* of the above.
- Repurposing neural networks is more practical.
- Xfer: library for automatic repurposing

Jordan Massiah

- Keerthana Elango
- ► Pablo Garcia Moreno
- Nikos Aletras
- Sebastian Flennerhag

Notebook: <u>adamian.github.io/talks/Damianou DL tutorial 19.ipynb</u>

Xfer: <u>github.com/amzn/xfer/</u>

► Blog: <u>link.medium.com/De5BXPJ9TT</u>

A more complete tutorial on deep learning: <u>adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf</u>