
Introduction to deep
transfer learning with Xfer

Andreas Damianou
Amazon, Cambridge UK

3/11/19 1

Talk at the University of Leeds, 8 March 2019

Outline

Deep neural networks quick reminder

Transfer learning intro

Xfer

• Meta-learning

Considerations

3/11/19 2

Further Resources

Notebook:
adamian.github.io/talks/Damianou_DL_tutorial_19.ipynb

Xfer: github.com/amzn/xfer/

Blog: link.medium.com/De5BXPJ9TT

A more complete tutorial on deep learning:
adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf

3/11/19 3

adamian.github.io/talks/Damianou_DL_tutorial_19.ipynb
https://github.com/amzn/xfer/
https://link.medium.com/De5BXPJ9TT
http://adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf

Deep Neural Networks intro

Deep neural networks: hierarchical function definitions
Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector w

l

. E.g. for 2 layers:

f

net

= h2(h1(x;w1);w2).

Generally f

net

: x 7! y with:

h1 = '(xw1 + b1)

h2 = '(h1w2 + b2)

· · ·
ˆy = '(h

L�1wL

+ b

L

)

� is the (non-linear) activation function.3/11/19 5

Deep neural networks: hierarchical function definitions
Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector w

l

. E.g. for 2 layers:

f

net

= h2(h1(x;w1);w2).

Generally f

net

: x 7! y with:

h1 = '(xw1 + b1)

h2 = '(h1w2 + b2)

· · ·
ˆy = '(h

L�1wL

+ b

L

)

� is the (non-linear) activation function.

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector w

l

. E.g. for 2 layers:

f

net

= h2(h1(x;w1);w2).

Generally f

net

: x 7! y with:

h1 = '(xw1 + b1)

h2 = '(h1w2 + b2)

· · ·
ˆy = '(h

L�1wL

+ b

L

)

� is the (non-linear) activation function.

3/11/19 6

Defining the LossDefining the loss

I We have our function approximator f
net

(x) = ŷ

I We have to define our loss (objective function) to relate this function outputs to
the observed data.

I E.g. squared di↵erence
P

n

(y

n

� ŷ

n

)

2 or cross-entropy

•

•

•

3/11/19 7

Probabilistic re-formulationProbabilistic re-formulation

I Training minimizing loss:

argmin

w

1

2

NX

i=1

(f

net

(w, x

i

)� y

i

)

2

| {z }
fit

+�

X

i

k w
i

k

| {z }
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax

w
log p(y|x,w)| {z }

fit

+ log p(w)| {z }
regularizer

where p(y|x,w) ⇠ N and p(w) ⇠ Laplace

I Optimization still done with back-prop (i.e. gradient descent).

Probabilistic re-formulation

I Training minimizing loss:

argmin

w

1

2

NX

i=1

(f

net

(w, x

i

)� y

i

)

2

| {z }
fit

+�

X

i

k w
i

k

| {z }
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax

w
log p(y|x,w)| {z }

fit

+ log p(w)| {z }
regularizer

where p(y|x,w) ⇠ N and p(w) ⇠ Laplace

I Optimization still done with back-prop (i.e. gradient descent).

•

Probabilistic re-formulationProbabilistic re-formulation

I Training minimizing loss:

argmin

w

1

2

NX

i=1

(f

net

(w, x

i

)� y

i

)

2

| {z }
fit

+�

X

i

k w
i

k

| {z }
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax

w
log p(y|x,w)| {z }

fit

+ log p(w)| {z }
regularizer

where p(y|x,w) ⇠ N and p(w) ⇠ Laplace

I Optimization still done with back-prop (i.e. gradient descent).

Probabilistic re-formulation

I Training minimizing loss:

argmin

w

1

2

NX

i=1

(f

net

(w, x

i

)� y

i

)

2

| {z }
fit

+�

X

i

k w
i

k

| {z }
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax

w
log p(y|x,w)| {z }

fit

+ log p(w)| {z }
regularizer

where p(y|x,w) ⇠ N and p(w) ⇠ Laplace

I Optimization still done with back-prop (i.e. gradient descent).

•

•

•

Graphical depictionGraphical depiction

W

W

W

3/11/19 10

Derivative wrt !"Derivative w.r.t w
0

#(h2 � y)2

#w0
= �2

1

2

(h2 � y)
#h2

#w0
=

= (y � h2)
#�(h1w1)

#h1w1

#h1w1

#h1

#h1

#w0
=

= ✏2 g1 w
T

1
#�(xw0)

xw0

#xw0

#w0
=

= ✏2 g1 w
T

1
#�(xw0)

#xw0| {z }
g0

xT

Propagation of error is just the chain rule.

3/11/19 13

Optimization & Implementation

GOTO notebook!!

3/11/19 14

Automatic differentiationAutomatic di↵erentiation

Example: f(x1, x2) = x1

q
log

x1
sin(x2

2)
has symbolic graph:

(image: sanyamkapoor.com)

3/11/19 15

3/11/19 16

Back to notebook!

Taming the dragon

3/11/19 17

Taming the dragon

 my neural network

 me

How to make your

neural network do

what you want it to do?

Probabilistic re-formulationProbabilistic re-formulation

I Training minimizing loss:

argmin

w

1

2

NX

i=1

(f

net

(w, x

i

)� y

i

)

2

| {z }
fit

+�

X

i

k w
i

k

| {z }
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax

w
log p(y|x,w)| {z }

fit

+ log p(w)| {z }
regularizer

where p(y|x,w) ⇠ N and p(w) ⇠ Laplace

I Optimization still done with back-prop (i.e. gradient descent).

Probabilistic re-formulation

I Training minimizing loss:

argmin

w

1

2

NX

i=1

(f

net

(w, x

i

)� y

i

)

2

| {z }
fit

+�

X

i

k w
i

k

| {z }
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax

w
log p(y|x,w)| {z }

fit

+ log p(w)| {z }
regularizer

where p(y|x,w) ⇠ N and p(w) ⇠ Laplace

I Optimization still done with back-prop (i.e. gradient descent).

•

•

•

Bayesian deep learning

We saw that optimizing the parameters is a challenge.
Why not marginalize them out completely?

Integrating out weights

D

:

= (x,y)

p(w|D) =

p(D|w)p(w)
p(D) =

R
p(D|w)p(w)dw

Inference

I
p(D) (and hence p(w|D)) is di�cult to compute because of the nonlinear way in
which w appears through g.

I Attempt at variational inference:

KL (q(w; ✓) k p(w|D))| {z }
minimize

= log(p(D))� L(q(w; ✓))| {z }
maximize

where
L(q(w; ✓)) = Eq(w;✓)[log p(D,w)]

| {z }
F

+H [q(w; ✓)]

I Term in red is still problematic. Solution: MC.

I Such approaches can be formulated as black-box inferences.

Inference

I
p(D) (and hence p(w|D)) is di�cult to compute because of the nonlinear way in
which w appears through g.

I Attempt at variational inference:

KL (q(w; ✓) k p(w|D))| {z }
minimize

= log(p(D))� L(q(w; ✓))| {z }
maximize

where
L(q(w; ✓)) = Eq(w;✓)[log p(D,w)]

| {z }
F

+H [q(w; ✓)]

I Term in red is still problematic. Solution: MC.

I Such approaches can be formulated as black-box inferences.

Inference

I
p(D) (and hence p(w|D)) is di�cult to compute because of the nonlinear way in
which w appears through g.

I Attempt at variational inference:

KL (q(w; ✓) k p(w|D))| {z }
minimize

= log(p(D))� L(q(w; ✓))| {z }
maximize

where
L(q(w; ✓)) = Eq(w;✓)[log p(D,w)]

| {z }
F

+H [q(w; ✓)]

I Term in red is still problematic. Solution: MC.

I Such approaches can be formulated as black-box inferences.

BNN with priors on its weights

Y

x1

'1

w

1

x2

'2

w

2

x3

'3

w

3

xq

'q
w

q

. . .

. . .

)

Y

x1

'1

q

(

w

1)

x2

'2

q

(

w

2)

x3

'3

q
(
w

3)

xq

'q

q

(

w

q

)

. . .

. . .

BNN with priors on its weights

Y

x1

'1

x2

'2

x3

'3

xq

'q

0

.

2

3

0

.

9

0

0
.
1
2

0

.

5

4

. . .

. . .

)

Y

x1

'1

x2

'2

x3

'3

xq

'q. . .

. . .

Bayesian neural network (what we saw before)

Y

H

' ' '. . .

...

H

X

' ' '. . .

From NN to GP

Y

H
G

' ' '.

...

H
G

X

' ' '.

I NN: H2 = W2�(H1)

I GP: � is 1�dimensional so:
H2 = f2(H1; ✓2) + ✏

I NN: p(W)

I GP: p(f(·))

Deep Gaussian processes. A. Damianou, N. Lawrence, 2013

From NN to GP

Y

H
G

' ' '.

...

H
G

X

' ' '.

I NN: H2 = W2�(H1)

I GP: � is 1�dimensional so:
H2 = f2(H1; ✓2) + ✏

I NN: p(W)

I GP: p(f(·))

Deep Gaussian processes. A. Damianou, N. Lawrence, 2013

Transfer Learning

Motivations for TL: DNN training requires expertise

Leveraging the power of DNNs even without too much expertise

3/11/19 39

My gradients
are exploding!

import xfer
xfer.repurpose(model)

Motivations for TL: Leverage commonalities in data

3/11/19 40

Why does Transfer Learning work?

3/11/19 41

Back to our transfer example

3/11/19 42

3/11/19 43

Predictions using a pre-trained model (no transfer)

Predictions using Xfer

3/11/19 44

github.com/amzn/xfer

Xfer Repurposers

3/11/19 45

Source
(pre-trained)

model

Target data

Repurposed
modelRepurposer

Three kinds of repurposers:
• Meta-model based
• Fine-tuning based
• Multi-task and meta-learning based (learning to learn)

Meta-model based repurposing

46

Given:
(source task)

["#$%&'()]

[+,-$%&'()]

.

.

.

47

Given:
(source task)

Step 1:
(target task)

["#$%&'()]

[+,-$%&'()]

.

.

.
["#-/'0)1]

[+,--/'0)1]

.

.

.

Meta-model based repurposing

48

Given:
(source task)

Step 2:
Meta-model

Step 1:
(target task)

["#$%&'()]

[+,--.'/)0][+,-$%&'()]

1

1

1
["#-.'/)0]

[+,--.'/)0]

1

1

1

Meta-model based repurposing

49

Given:
(source task)

Step 2:
Meta-model

Step 1:
(target task)

["#$%&'()]

[+,--.'/)0]

GP, SVM,
LR, BNN …

[+,-$%&'()]

1

1

1
["#-.'/)0]

[+,--.'/)0]

1

1

1

Meta-model based repurposing

Meta-model based repurposing

3/11/19 50

repurposer = xfer.LrRepurposer(source_model, feature_layer_names=['fc2','fc3’])

repurposer.repurpose(train_iterator)

predictions = repurposer.predict_label(test_iterator)

Given

["#$%&'()]

[+,-$%&'()]

.

.

.

Fine-tuning based repurposing

Given Refine

["#$%&'()]

[+,-$%&'()]

.

.

.

[+,--/'0)1]

.

.

.

.
["#-/'0)1]

Fine-tuning based repurposing

Given Refine Fine-tune

["#$%&'()]

[+,-$%&'()]

.

.

.

["#-/'0)1]

[+,--/'0)1]

.

.

.

.

["#-/'0)1]

[+,--/'0)1]

.

.

.

.

Fine-tuning based repurposing

3/11/19 54

mh = xfer.model_handler.ModelHandler(source_model)

conv1 = mxnet.sym.Convolution(name='convolution1', kernel=(20,20), num_filter=64)

mh.add_layer_bottom([conv1])

mod = mh.get_module(iterator, fixed_layer_parameters=mh.get_layer_parameters(['conv1_1']),
random_layer_parameters=mh.get_layer_parameters(['fc6', 'fc7’]))

mod.fit(iterator, num_epoch=5)

Fine-tuning based repurposing

Transfer through meta-learning

Learning to learn

Related to multi-task learning

Our approach: transfer knowledge across learning processes
• Transfer learning in a higher level of abstraction
• Transfer learning among typically many tasks
• All task sub-models act as source and target models

3/11/19 66

Meta-learning or multi-task learning

3/11/19 67

MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average
θ!∗ are as best as possible.

θ : global initialization

Meta-learning or multi-task learning

3/11/19 68

MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average
θ!∗ are as best as possible.

• θ and θ!∗ are in the same space.
So we can backprop.

θ : global initialization

Meta-learning or multi-task learning

3/11/19 69

MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average
θ!∗ are as best as possible.

• θ and θ!∗ are in the same space.
So we can backprop.

✓ ✓ � �r
✓

P
⌧i⇠p(⌧) L⌧i (f (✓

0 � ↵r
✓

0
L

⌧if(✓
0
)))

min

✓

P
⌧i⇠p(⌧)

L
⌧i(f✓�↵r✓L⌧i (f✓)

)

θ : global initialization

Meta-learning optimization loop

Start with initial θ
for meta_steps =	1,	2….	:
• Take a batch of instances per task
• Update θ/ ,	θ0 ,	…	θ1 using each task’s loss function individually
• Update θ such that the average of all tasks’ losses is minimized

3/11/19 70

Meta-learning or multi-task learning

3/11/19 71

MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average
θ!∗ are as best as possible.

• θ and θ!∗ are in the same space.
So we can backprop.

✓ ✓ � �r
✓

P
⌧i⇠p(⌧) L⌧i (f (✓

0 � ↵r
✓

0
L

⌧if(✓
0
)))

min

✓

P
⌧i⇠p(⌧)

L
⌧i(f✓�↵r✓L⌧i (f✓)

)

θ : global initialization

Meta-learning or multi-task learning

3/11/19 72

Leap approach by Flennerhag et al. 2019
(in Xfer soon!)

• Optimize θ such that on average
θ!∗ is as best as possible and
θà θ!∗ is as short as possible.

• θ and θ!∗ are in the same space.
So we can backprop.

✓ ✓ � �r
✓

P
⌧i⇠p(⌧) L⌧i (f (✓

0 � ↵r
✓

0
L

⌧if(✓
0
)))

min

✓

P
⌧i⇠p(⌧)

L
⌧i(f✓�↵r✓L⌧i (f✓)

)

✓ ✓ � �r
✓

P
⌧i⇠p(⌧) L⌧i (f (✓

0 � ↵r
✓

0
L

⌧if(✓
0
)))

min

✓

P
⌧i⇠p(⌧)

L
⌧i(f✓�↵r✓L⌧i (f✓)

)

min

✓

P
⌧i⇠p(⌧)

L
⌧i(f✓�↵r✓L⌧i (f✓)

) + �

⌧i(✓)

#$% #$&
#$'

θ : global initialization

Leap balances gradient paths from all tasks…

Leap balances gradient paths from all tasks. . .

✓0

task btask a

5
3/11/19 73

. . . to minimize the expected gradient path

✓0

task btask a

Canonical meta-objective

min
✓02⇥

E⌧⇠p(⌧) d(✓
0)

6

… to minimize the expected gradient path.

Meta-step 2

Meta-step 1

Xfer meta-learning (available soon!)

3/11/19 74

import xfer.contrib.xfer_leap as leap

lmr = leap.leap_meta_repurposer.LeapMetaRepurposer(model, num_meta_steps, num_epochs)

lmr.repurpose(train_data_all)

3/11/19 75

3/11/19 76

Data properties considerations

3/11/19 77

!"
#$%&'()"

!*
#$%&'+)*

Source task:

Target task:

Transfer learning: Use ,-./01 to improve ,-./0*

Conclusions

• NNs are mathematically simple; challenge is how to optimize them.

• Data efficiency? Uncertainty Calibration? Interpretability? Safety?

• Bayesian NNs solve some of the above.

• Repurposing neural networks is more practical.

• Xfer: library for automatic repurposing

Acknowledgements

Jordan Massiah
Keerthana Elango
Pablo Garcia Moreno
Nikos Aletras
Sebastian Flennerhag

3/11/19 79

Further Resources

Notebook:
adamian.github.io/talks/Damianou_DL_tutorial_19.ipynb

Xfer: github.com/amzn/xfer/

Blog: link.medium.com/De5BXPJ9TT

A more complete tutorial on deep learning:
adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf

3/11/19 80

adamian.github.io/talks/Damianou_DL_tutorial_19.ipynb
https://github.com/amzn/xfer/
https://link.medium.com/De5BXPJ9TT
http://adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf

