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Deep neural networks quick reminder
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Considerations 
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Further Resources

Notebook:
adamian.github.io/talks/Damianou_DL_tutorial_19.ipynb

Xfer: github.com/amzn/xfer/

Blog: link.medium.com/De5BXPJ9TT

A more complete tutorial on deep learning: 
adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf
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adamian.github.io/talks/Damianou_DL_tutorial_19.ipynb
https://github.com/amzn/xfer/
https://link.medium.com/De5BXPJ9TT
http://adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf


Deep Neural Networks intro



Deep neural networks: hierarchical function definitions 
Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector w

l

. E.g. for 2 layers:

f

net

= h2(h1(x;w1);w2).

Generally f

net

: x 7! y with:

h1 = '(xw1 + b1)

h2 = '(h1w2 + b2)

· · ·
ˆy = '(h

L�1wL

+ b

L

)

� is the (non-linear) activation function.3/11/19 5
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Defining the LossDefining the loss

I We have our function approximator f
net

(x) = ŷ

I We have to define our loss (objective function) to relate this function outputs to
the observed data.

I E.g. squared di↵erence
P

n

(y

n

� ŷ

n

)

2 or cross-entropy

•

•

•
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Probabilistic re-formulationProbabilistic re-formulation

I Training minimizing loss:

argmin

w

1

2

NX

i=1

(f

net

(w, x

i

)� y

i

)

2

| {z }
fit

+�

X

i

k w
i

k

| {z }
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax

w
log p(y|x,w)| {z }

fit

+ log p(w)| {z }
regularizer

where p(y|x,w) ⇠ N and p(w) ⇠ Laplace

I Optimization still done with back-prop (i.e. gradient descent).
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Graphical depictionGraphical depiction

W

W

W
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Derivative wrt !"Derivative w.r.t w
0

#(h2 � y)2

#w0
= �2

1

2

(h2 � y)
#h2

#w0
=

= (y � h2)
#�(h1w1)

#h1w1

#h1w1

#h1

#h1

#w0
=

= ✏2 g1 w
T

1
#�(xw0)

xw0

#xw0

#w0
=

= ✏2 g1 w
T

1
#�(xw0)

#xw0| {z }
g0

xT

Propagation of error is just the chain rule.
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Optimization & Implementation

GOTO notebook!!
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Automatic differentiationAutomatic di↵erentiation

Example: f(x1, x2) = x1

q
log

x1
sin(x2

2)
has symbolic graph:

(image: sanyamkapoor.com)
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Back to notebook!



Taming the dragon
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Taming the dragon

 my neural network

 me

How to make your

neural network do

what you want it to do?
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Bayesian deep learning

We saw that optimizing the parameters is a challenge.
Why not marginalize them out completely?



Integrating out weights

D

:

= (x,y)

p(w|D) =

p(D|w)p(w)
p(D) =

R
p(D|w)p(w)dw



Inference

I
p(D) (and hence p(w|D)) is di�cult to compute because of the nonlinear way in
which w appears through g.

I Attempt at variational inference:

KL (q(w; ✓) k p(w|D))| {z }
minimize

= log(p(D))� L(q(w; ✓))| {z }
maximize

where
L(q(w; ✓)) = Eq(w;✓)[log p(D,w)]

| {z }
F

+H [q(w; ✓)]

I Term in red is still problematic. Solution: MC.

I Such approaches can be formulated as black-box inferences.
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BNN with priors on its weights
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BNN with priors on its weights
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Bayesian neural network (what we saw before)

Y
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From NN to GP

Y

H
G

' ' '. . .. . . . . .

...

H
G

X

' ' '. . .. . . . . .

I NN: H2 = W2�(H1)

I GP: � is 1�dimensional so:
H2 = f2(H1; ✓2) + ✏

I NN: p(W)

I GP: p(f(·))

Deep Gaussian processes. A. Damianou, N. Lawrence, 2013
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Transfer Learning



Motivations for TL: DNN training requires expertise

Leveraging the power of DNNs even without too much expertise
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My gradients 
are exploding!

import xfer
xfer.repurpose(model)



Motivations for TL: Leverage commonalities in data
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Why does Transfer Learning work?
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Back to our transfer example
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Predictions using a pre-trained model (no transfer)

Predictions using Xfer
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github.com/amzn/xfer



Xfer Repurposers
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Source 
(pre-trained) 

model

Target data

Repurposed 
modelRepurposer

Three kinds of repurposers:
• Meta-model based
• Fine-tuning based
• Multi-task and meta-learning based (learning to learn)



Meta-model based repurposing

46

Given:
(source task)

["#$%&'()]

[+,-$%&'()]

.

.

.
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Given:
(source task)

Step 1:
(target task)

["#$%&'()]

[+,-$%&'()]

.

.

.
["#-/'0)1]

[+,--/'0)1]

.

.

.

Meta-model based repurposing
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(source task)

Step 2:
Meta-model

Step 1:
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Meta-model based repurposing
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Given:
(source task)

Step 2:
Meta-model

Step 1:
(target task)

["#$%&'()]

[+,--.'/)0]

GP, SVM, 
LR, BNN …

[+,-$%&'()]

1

1

1
["#-.'/)0]

[+,--.'/)0]

1

1

1

Meta-model based repurposing



Meta-model based repurposing
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repurposer = xfer.LrRepurposer(source_model, feature_layer_names=['fc2','fc3’])

repurposer.repurpose(train_iterator)

predictions = repurposer.predict_label(test_iterator)



Given

["#$%&'()]

[+,-$%&'()]

.

.

.

Fine-tuning based repurposing



Given Refine
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Fine-tuning based repurposing



Given Refine Fine-tune
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mh = xfer.model_handler.ModelHandler(source_model)

conv1 = mxnet.sym.Convolution(name='convolution1', kernel=(20,20), num_filter=64) 

mh.add_layer_bottom([conv1]) 

mod = mh.get_module(iterator, fixed_layer_parameters=mh.get_layer_parameters(['conv1_1']), 
random_layer_parameters=mh.get_layer_parameters(['fc6', 'fc7’]))

mod.fit(iterator, num_epoch=5)

Fine-tuning based repurposing



Transfer through meta-learning

Learning to learn  

Related to multi-task learning 

Our approach: transfer knowledge across learning processes
• Transfer learning in a higher level of abstraction
• Transfer learning among typically many tasks
• All task sub-models act as source and target models

3/11/19 66



Meta-learning or multi-task learning
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MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average 
θ!∗ are as best as possible. 

θ :  global initialization



Meta-learning or multi-task learning
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MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average 
θ!∗ are as best as possible. 

• θ and θ!∗ are in the same space. 
So we can backprop. 

θ :  global initialization



Meta-learning or multi-task learning
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MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average 
θ!∗ are as best as possible. 

• θ and θ!∗ are in the same space. 
So we can backprop. 

✓  ✓ � �r
✓

P
⌧i⇠p(⌧) L⌧i (f (✓

0 � ↵r
✓

0
L

⌧if(✓
0
)))

min

✓

P
⌧i⇠p(⌧)

L
⌧i(f✓�↵r✓L⌧i (f✓)

)

θ :  global initialization



Meta-learning optimization loop

Start with initial θ
for meta_steps =	1,	2….	: 
• Take a batch of instances per task
• Update θ/ ,	θ0 ,	…	θ1 using each task’s loss function individually
• Update θ such that the average of all tasks’ losses is minimized 
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Meta-learning or multi-task learning
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MAML approach by Chelsea Finn et al. 2017

• Optimize θ such that on average 
θ!∗ are as best as possible. 

• θ and θ!∗ are in the same space. 
So we can backprop. 

✓  ✓ � �r
✓

P
⌧i⇠p(⌧) L⌧i (f (✓

0 � ↵r
✓

0
L

⌧if(✓
0
)))

min

✓

P
⌧i⇠p(⌧)

L
⌧i(f✓�↵r✓L⌧i (f✓)

)

θ :  global initialization



Meta-learning or multi-task learning
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Leap approach by Flennerhag et al. 2019
(in Xfer soon!)

• Optimize θ such that on average 
θ!∗ is as best as possible and
θà θ!∗ is as short as possible. 

• θ and θ!∗ are in the same space. 
So we can backprop. 

✓  ✓ � �r
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P
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0
L
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P
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) + �
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#$% #$&
#$'

θ :  global initialization



Leap balances gradient paths from all tasks…

Leap balances gradient paths from all tasks. . .

✓0

task btask a

5
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. . . to minimize the expected gradient path

✓0

task btask a

Canonical meta-objective

min
✓02⇥

E⌧⇠p(⌧) d(✓
0)

6

… to minimize the expected gradient path.

Meta-step 2

Meta-step 1



Xfer meta-learning (available soon!)
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import xfer.contrib.xfer_leap as leap 

lmr = leap.leap_meta_repurposer.LeapMetaRepurposer(model, num_meta_steps, num_epochs)

lmr.repurpose(train_data_all)
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Data properties considerations
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!"
#$%&'( )"

!*
#$%&'+ )*

Source task: 

Target task:

Transfer learning:           Use ,-./01 to improve ,-./0*



Conclusions

• NNs are mathematically simple; challenge is how to optimize them.

• Data efficiency? Uncertainty Calibration? Interpretability? Safety?

• Bayesian NNs solve some of the above.

• Repurposing neural networks is more practical.

• Xfer: library for automatic repurposing
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Further Resources

Notebook:
adamian.github.io/talks/Damianou_DL_tutorial_19.ipynb

Xfer: github.com/amzn/xfer/

Blog: link.medium.com/De5BXPJ9TT

A more complete tutorial on deep learning: 
adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf
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