Deep transfer learning with
Xfer

Andreas Damianou

Amazon, Cambridge UK

amMaZon.com

Outline

* Deep neural networks quick reminder
* Transfer learning intro

e Xfer

* Transfer learning via meta-learning

 Considerations

Resources

 Notebook:
adamian.github.io/talks/Damianou DL Xfer.ipynb

* A more complete tutorial on deep learning:
adamian.github.io/talks/Damianou deep learning rss 2018.pdf

3/7/19

https://nbviewer.jupyter.org/url/adamian
https://nbviewer.jupyter.org/url/adamian.github.io/talks/Damianou_DL_Xfer.ipynb
http://adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector w;. E.g. for 2 layers:

fnet — hQ(hl (X§ W1)§ WQ)-

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector w;. E.g. for 2 layers:

fnet — hQ(hl (X§ W1)§ WQ)-

Generally fpet : X — ¥y with:

h; = gO(XWl + bl)
h2 = gO(h1W2 + bg)

A

y = plhr_1wp +br)

¢ is the (non-linear) activation function.

Defining the loss

« We have our function approximator fret(x) =g

« We have to define our loss (objective function) to relate this function outputs to
the observed data.

« E.g. squared difference > (y,, — §)? or cross-entropy

Graphical depiction

S Y S
.})&1 4\.})«1 4\.
s,n»w XK
@ .\yo.»of'.\y%%b.
RN RS TR
K7 WK BK7 W
VAV

Optimization and implementation

* Optimization done with back-propagation, based on the chain rule

GOTO notebook!!

Taming the dragon

< my neural network
How to make your

neural network do

what you want it to do?

3/7/19

Motivations for TL: DNN training requires expertise

* Leveraging the power of DNNs even without too much expertise

1mport xfer
xfer.repurpose(model)

" My gradients
are exploding! g

3/7/19

11

Motivations for TL: Leverage commonalities in data

Target Task (Few images)

@: o &b
I = =

%3 v

Source Task (Many images)

3/7/19

T

Transfer

— Cheese

— Tree

~_ Cor

— Firetruck

12

Why does Transfer Learning work?

Low Level Features Medium Level Features High Level Features

Airplane
—— Bird
Superman
—— Car

— Train

3/7/19 13

Back to our transfer example

Target Task (Few images)

f'/-o’-é: @ % — Cheese
s ﬁ Q . \— Trze
Y v ‘

Transfer

Source Task (Many images)

— Firetruck

3/7/19 14

Predictions using a pre-trained model (no transfer)

hook hook hook hook remote control hook horizontal bar
° E

oafh | |# (</ D G

© L)

Predictions using Xfer

cheese tree house car cheese tree house
/2 o/
oof) | |7 :' G
|
°) A 8
|#)

house

cheese

tree

3/7/19

15

github.com/amzn/xfer

:Xfer

Deep Transfer Learning for MXNet

build | passing pypi v1.0.0 j license 'Apache-2.0

Website | Documentation | Contribution Guide

What is Xfer?

Xfer is a library that allows quick and easy transfer of knowledge'’? stored in deep neural networks implemented in

MXNet. Xfer can be used with data of arbitrary numeric format, and can be applied to the common cases of image or
text data.

3/7/19

16

Xfer Repurposers

Source
(pre-trained)

del fer
MRS Repurposed
Repurposer el

Target data

Three kinds of repurposers:

* Meta-model based
* Fine-tuning based
* Multi-task and meta-learning based (learning to learn)

3/7/19

17

Meta-model based repurposing

Given:
(source task)

[0 UTS ource]

w

w

[I N S ource]

18

Meta-model based repurposing

Given: Step 1:
(source task) (target task)
[OUTSource] [OUTTarget]
w
w
w

[INSource] [INTarget]

19

Meta-model based repurposing

Given: Step 1:
(source task) (target task)
[OUTSource] [OUTTarget]
w w
w
w
[INSource] [INTarget]

Step 2:
Meta-model

[0 UTTarget] Q

20

Meta-model based repurposing

Given: Step 1: Step 2:
(source task) (target task) Meta-model
[OUTSource] [OUTTarget] [OUTTarget] Q
W w GP, SVM,
LR, BNN ...
w
@ @
w

[INSource] [INTarget]

21

Meta-model based repurposing

repurposer = xfer.LrRepurposer(source_model, feature layer names=['fc2’,'fc3’])
repurposer.repurpose(train_iterator)

predictions = repurposer.predict_label(test_iterator)

3/7/19

22

Fine-tuning based repurposing

Given
[OUTSource]

w

w

[I N S ource]

Fine-tuning based repurposing

Given Refine
[0 UTSource] [0 UTTarget]
14 74
14 74
14 W
[INSOurce] [INTarget]

Fine-tuning based repurposing

Given Refine
[0 UTSource] [0 UTTarget]
14 14
|14 /4

w w

[I N S ource]

[I N Target]

Fine-tune
[OUTTarget]

w

[I N Target]

Fine-tuning based repurposing

mh = xfer.model _handler.ModelHandler(source_model)
convl = mxnet.sym.Convolution(name='convolutionl’, kernel=(20,20), num_filter=64)
mh.add_layer_bottom([conv1])

mod = mh.get_module(iterator, fixed layer parameters=mh.get_layer parameters(['convl 1']),

random_layer parameters=mh.get_layer parameters(['fc6', 'fc7’]))

mod.fit(iterator, num epoch=5)

3/7/19

26

Closer look at ModelHandler: inspection

mh = xfer.model _handler.ModelHandler(source_model)
print(mh.layer_names)
print(mh.get_layer_type('relu5 2’))
print(mh.get_layer_names_matching_type('Convolution'))

mh.visualize_net()

3/7/19

27

Closer look at ModelHandler: feature extraction

features, labels = mh.get_layer output(data iterator=iterator, layer names=['fc6’, 'fc8'])

3/7/19

28

Closer look at ModelHandler: model manipulation

mh.drop_layer _top(4)

mh.drop_layer_bottom(1)

convl = mx.sym.Convolution(= 'convolutionl’, =(20,20), =64)
fc = mx.sym.FullyConnected(= 'fullyconntectedl’, =4)

softmax = mx.sym.SoftmaxOutput(name = 'softmax’)

mh.add_layer bottom([conv1])

mh.add_layer top([fc, softmax])

3/7/19

Custom repurposers

class KNNRepurposer(xfer.MetaModelRepurposer):
def __init_ (...):
super(KNNRepurposer, self). _init_ (...)
def train_model from_features(...):
lin_model = KNeighborsClassifier(=self.n_neighbors,...)
def predict_probability_from_features(): ...

def predict_label from_features(): ...

def get_params(self): ...

def serialize(self, file_prefix): ...

https://xfer.readthedocs.io/en/master/demos/xfer-custom-repurposers.html

3/7/19 30

Custom repurposers

class Add2FullyConnectedRepurposer(xfer.NeuralNetworkRepurposer):

def create_target_module(self, train_iterator: mx.io.Datalter):
model _handler = xfer.model_handler.ModelHandler(self.source_model, ...)

ModelHandler functionality goes here...

return model_handler.get._ module(train_iterator, fixed layer parameters= conv_layer_params)

https://xfer.readthedocs.io/en/master/demos/xfer-custom-repurposers.html

3/7/19 31

Reminder: fine-tuning based repurposing

[OUTTarget]
- W

Weights from pre-trained
source model 1w

- W

New weights { w

[INTarget]

3/7/19 32

Reminder: fine-tuning based repurposing

[OUTTarget]

w * What learning rate to use for

re-trained vs new weights?
Weights from pre-trained P 5

0w
source model * How many epochs?

- w * What optimizer to use?

New weights { w

[INTarget]

3/7/19 33

HPO for hyperparameter tuning

optimizer_id to _name = {1: 'sgd’, 2:'adam’}

domain_with_2 hyperparams =
[{'name": 'learning_rate’, 'type': 'continuous', '"domain': (0,1)},
{'name': 'optimizer’, 'type': 'discrete’, 'domain': (1,2)}]

hyperparameter_optimizer2 = GPyOpt.methods.BayesianOptimization(
= hpo_objective_function,

domain = domain_with_2_ hyperparams))

hyperparameter_optimizer2.run_optimization()

https://xfer.readthedocs.io/en/master/demos/xfer-hpo.html

hyperparameter_optimizer.plot_acquisition()

3 N |
= Acquisition (arbitrary units)

fix)

3/7/19 x

35

Xfer with Gluon

* Gluon models can be used with Xfer provided they use HybridBlocks
so that the symbol can be extracted.

net = gluon.nn.HybridSequential()

net.hybridize()

3/7/19 36

Xfer with Gluon

* Gluon models can be used with Xfer provided they use HybridBlocks
so that the symbol can be extracted.

net = gluon.nn.HybridSequential()

net.hybridize()

* The Gluon model (block) is then converted into a model (symbol)

sym = block(data)

args, auxs = block2symbol(block.collect_params())
model = symbol2model(sym, data)
model.set_params(args, auxs)

Transfer through meta-learning

* Learning to learn

* Related to multi-task learning

* Qur approach: transfer knowledge across learning processes
* Transfer learning in a higher level of abstraction
* Transfer learning among typically many tasks
 All task sub-models act as source and target models

Meta-learning or multi-task learning

e Optimize 6 such that on average
g7 are as best as possible.

3/7/19

6 : global initialization
— meta-learning

9 ---- learning/adaptation
VL
VL,
oG
V£1 ,,,, 3
* 7 ™
1° 05

MAML approach by Chelsea Finn et al. 2017

39

Meta-learning or multi-task learning

e Optimize 6 such that on average
g7 are as best as possible.

* @ and d; are in the same space.
So we can backprop.

3/7/19

6 : global initialization
— meta-learning

(9 ---- learning/adaptation
VL
VL
V£1 ,,,,, ¢ (93
T./' \.9*

MAML approach by Chelsea Finn et al. 2017

40

Meta-learning or multi-task learning

6 : global initialization
— meta-learning

* Optimize @ such that on average (9 ---- learning/adaptation
6; are as best as possible. Vs
VL,
VLD O\ -05
* @ and d; are in the same space.
So we can backprop. N

MAML approach by Chelsea Finn et al. 2017

min Z [:7‘7; (f@—OéV9£Ti (.f@))

O ri~op(7)

3/7/19 41

e Start with initial &

* for meta_steps =1, 2....
* Take a batch of instances per task

* Update 0,6, , ... 0. using each task’s loss function individually
 Update & such that the average of all tasks’ losses is minimized

Meta-learning or multi-task learning

6 : global initialization
— meta-learning

* Optimize @ such that on average (9 ---- learning/adaptation
6; are as best as possible. Vs
VL,
VLD O\ -05
* @ and d; are in the same space.
So we can backprop. N

MAML approach by Chelsea Finn et al. 2017

min Z [:7‘7; (f@—OéV9£Ti (.f@))

O ri~op(7)

3/7/19 43

Meta-learning or multi-task learning

6 : global initialization
— meta-learning

* Optimize @ such that on average (9 ---- learning/adaptation
6; is as best as possible and VLs
6 = 67 is as short as possible. VL,
VL O\ -05
* @and 6; are in the same space. Vo X 4
So we can backprop. " Vg

Leap approach by Flennerhag et al. 2019
(in Xfer soon!)

min Z L:Tf,;(fﬁ—ongﬁTi(f@))_l_7%;(‘9)

O ri~op(7)

3/7/19 a4

Leap balances gradient paths from all tasks...

... to minimize the expected gradient path.

(90
eta—Stepl task a task b
90
2 task a JZ task b
eta'step %

3/7/19

45

Xfer meta-learning (avaitable soon!)

import xfer.contrib.xfer_leap as leap

Imr.repurpose(train_data_all)

Imr = leap.leap_meta_repurposer.LeapMetaRepurposer(model, num_meta_steps, num_epochs)

Mean Loss:
0,

Metastep: 0, Num tasks: 4,
1, Task:
Task:
Task:

Task:

Metastep: Initial

Metastep: Initial

I

1 1
Metastep: 1, 2, Initial
Metastep: 1 3, Initial

I I

Mean Loss:
0,

Metastep: 8, Num tasks:

9,

4,
Task:
Task:
Task:
Task:

Metastep: Initial

Metastep: Initial

9’ 1’
Metastep: 9, 2, Initial
Metastep: 9, 3, Initial

3/7/19

57.061

Loss: 778.318, Final Loss: 25.655, Loss delta: -752.663
Loss: 1123.906, Final Loss: 60.993, Loss delta: -1062.913
Loss: 620.399, Final Loss: 38.558, Loss delta: -581.841
Loss: 1251.979, Final Loss: 46.972, Loss delta: -1205.006
27.376

Loss: 389.985, Final Loss: 13.036, Loss delta: -376.949
Loss: 654.023, Final Loss: 34.885, Loss delta: -619.138
Loss: 314.407, Final Loss: 21.424, Loss delta: -292.983
Loss: 958.127, Final Loss: 37.829, Loss delta: -920.299

46

Imr.meta logger.plot losses()

Task 0

0
1000 -

8004 1

2
w600 A

g

400
200 -
o-

loss

o
-
~N -
w
r'e
v

epoch

3/7/19

1400 -

1200 -

1000 -

800 -

600

400 -

200 -

Task 1

i

N

epoch

r

o

loss

Task 2
0
800 -
1
600 -
2
400 -
200 -
o L T T T T T A L
0 1 2 3 - 5 6
epoch

1600

Task 3

1400 -

1200 A

1000 -

800 -

600 1

400 -

200 1

0

epoch

.

47

v
o

loss

3/7/19

Task 0

1000 -

800 -

600 -

400 -

200 -

0 B

w
Fes
ul|-l

Data properties considerations

Model
Source task: X, M > Y
Modelr
Target task: X7 > Y
Transfer learning: Use Models to improve Modelr
Setting Description Considerations
Xs # Xr Different input domains Domain adaptation
Vs # YVr Different label spaces Multi-task learning might be preferable
p(Ys) # p(Yr) | Dissimilar output distribution Transferring lower layers preferable
p(Xs) # p(X7) | Dissimilar input distribution Transferring higher layers preferable
Y7| < |Ys] Much fewer labelled data in 7° Data efficient TL required
: Take care of catastrophic forgetting
Y7| > |Ys| Much fewer labelled data in S or train T from scratch

3/7/19 49

Acknowledgements

* Jordan Massiah

* Keerthana Elango

* Pablo Garcia Moreno
* Nikos Aletras

e Sebastian Flennerhag

Thanks!

 Notebook:
adamian.github.io/talks/Damianou DL Xfer.ipynb

* Xfer: github.com/amzn/xfer/

* Blog: link.medium.com/De5BXPJOTT

* A more complete tutorial on deep learning:
adamian.github.io/talks/Damianou deep learning rss 2018.pdf

3/7/19

51

https://nbviewer.jupyter.org/url/adamian
https://nbviewer.jupyter.org/url/adamian.github.io/talks/Damianou_DL_Xfer.ipynb
https://github.com/amzn/xfer/
https://link.medium.com/De5BXPJ9TT
http://adamian.github.io/talks/Damianou_deep_learning_rss_2018.pdf

