
Representation and deep learning with Bayesian
non-parametric models

Andreas Damianou

Department of Computer Science, University of Sheffield, UK

Athens University of Economics and Business, 14/10/2015

Sheffield

Sheffield Robotics

Outline

Part 1: A general view
Deep learning, Representation learning

Part 2: Gaussian processes
GPs as infinite dimensional Gaussian distributions
Overfitting, model complexity and Occam’s razor
The Bayesian advantage
Unsupervised GPs: GP-LVM

Part 3: Deep Gaussian processes
The model family
Deep Intuitions
Training / Regularization
Bayesian regularization
Multi-view modelling

Summary

Outline

Part 1: A general view
Deep learning, Representation learning

Part 2: Gaussian processes
GPs as infinite dimensional Gaussian distributions
Overfitting, model complexity and Occam’s razor
The Bayesian advantage
Unsupervised GPs: GP-LVM

Part 3: Deep Gaussian processes
The model family
Deep Intuitions
Training / Regularization
Bayesian regularization
Multi-view modelling

Summary

Deep learning is very popular

A deep model

Y = f3(f2(· · · f1(X))), Hi = fi(Hi−1)

Representation learning

I This talk is not about deep learning!

I But I want to highlight the power of representation learning...

I ...and the problem of bad regularization (a major drawback of
current deep learning methods).

I This talk is about: Bayesian nonparametric approach to
representation learning...

I ...and how it can be linked to deep learning.

I Gaussian processes (GPs) will be used as building blocks, i.e.
f ∼ GP.

I Advantages sought: nonlinear, nonparametric, Bayesian
modeling, regularization.

Representation learning

I This talk is not about deep learning!

I But I want to highlight the power of representation learning...

I ...and the problem of bad regularization (a major drawback of
current deep learning methods).

I This talk is about: Bayesian nonparametric approach to
representation learning...

I ...and how it can be linked to deep learning.

I Gaussian processes (GPs) will be used as building blocks, i.e.
f ∼ GP.

I Advantages sought: nonlinear, nonparametric, Bayesian
modeling, regularization.

How this talk will proceed...

GP = Gaussian process (a particular type of stochastic process)

Y

X

GP

Y

H

GP-LVM

Y

H2

H1

Deep GP

Y Z

HsHY HZ

X

Multi-view

Outline

Part 1: A general view
Deep learning, Representation learning

Part 2: Gaussian processes
GPs as infinite dimensional Gaussian distributions
Overfitting, model complexity and Occam’s razor
The Bayesian advantage
Unsupervised GPs: GP-LVM

Part 3: Deep Gaussian processes
The model family
Deep Intuitions
Training / Regularization
Bayesian regularization
Multi-view modelling

Summary

Introducing Gaussian Processes:

I A Gaussian distribution depends on a mean and a covariance
matrix.

I A Gaussian process depends on a mean and a covariance
function.

Infinite model... but we always work with finite sets!

Let’s start with a multivariate Gaussian:

p(f1, f2, · · · , fs︸ ︷︷ ︸
fA

, fs+1, fs+2, · · · , fN︸ ︷︷ ︸
fB

) ∼ N (µ,K).

with:

µ =

[
µA
µB

]
and K =

[
KAA KAB

KBA KBB

]
Marginalisation property:

p(fA, fB) ∼ N (µ,K). Then:

p(fA) =

∫
fB

p(fA, fB)dfB = N (µA,KAA)

Infinite model... but we always work with finite sets!

Let’s start with a multivariate Gaussian:

p(f1, f2, · · · , fs︸ ︷︷ ︸
fA

, fs+1, fs+2, · · · , fN︸ ︷︷ ︸
fB

) ∼ N (µ,K).

with:

µ =

[
µA
µB

]
and K =

[
KAA KAB

KBA KBB

]
Marginalisation property:

p(fA, fB) ∼ N (µ,K). Then:

p(fA) =

∫
fB

p(fA, fB)dfB = N (µA,KAA)

Infinite model... but we always work with finite sets!

In the GP context:

µ∞ =

µX

· · ·
· · ·

 and K∞ =

[
KXX · · ·
· · · · · ·

]

Posterior is also Gaussian!

p(fA, fB) ∼ N (µ,K). Then:

p(fA|fB) = N (· · · , · · ·)

In the GP context this can be used for inter/extrapolation:

p(f∗|f1, · · · , fN) = p(f(x∗)|f(x1), · · · , f(xN)) ∼ N

But where is K.. coming from in GPs?

Posterior is also Gaussian!

p(fA, fB) ∼ N (µ,K). Then:

p(fA|fB) = N (· · · , · · ·)

In the GP context this can be used for inter/extrapolation:

p(f∗|f1, · · · , fN) = p(f(x∗)|f(x1), · · · , f(xN)) ∼ N

But where is K.. coming from in GPs?

Posterior is also Gaussian!

p(fA, fB) ∼ N (µ,K). Then:

p(fA|fB) = N (· · · , · · ·)

In the GP context this can be used for inter/extrapolation:

p(f∗|f1, · · · , fN) = p(f(x∗)|f(x1), · · · , f(xN)) ∼ N

But where is K.. coming from in GPs?

Covariance samples and hyperparameters

I k(x, x′) = α exp
(
−γ

2 (x− x
′)>(x− x′)

)
I The hyperparameters of the cov. function define the

properties (and NOT an explicit form) of the sampled
functions

Incorporating Gaussian noise is tractable

I So far we assumed: f = f(X)

I Assuming that we only observe noisy versions y of the true
outputs f :

y = f(X) + ε, ε ∼ N (0, σ2)

Fitting the data (shaded area is uncertainty)

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data - Prior Samples

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data - more noise

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data - no noise

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data - Posterior samples

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data

−2 −1 1 2

−3

−2

−1

1

2

3

Fitting the data

−2 −1 1 2

−3

−2

−1

1

2

3

Curve fitting

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

I Which curve fits the data better?

Curve fitting

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

I Which curve fits the data better?

I Which curve is more “complex”?

Curve fitting

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

I Which curve fits the data better?

I Which curve is more “complex”?

I Which curve is better overall?

Curve fitting

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

I Which curve fits the data better?

I Which curve is more “complex”?

I Which curve is better overall?

Need a good balance between data fit vs overfitting!

How do GPs solve the overfitting problem (i.e. regularize)?

How do GPs solve the overfitting problem (i.e. regularize)?

I Answer: Integrate over the function itself!

I This is associated with the Bayesian methodology.

I So, we will average out all possible function forms, under a
(GP) prior!

Recap:

ML: argmax
w

p(y|w, φ(x)) e.g. y = φ(x)>w + ε

Bayesian: argmax
θ

∫
f p(y|f) p(f |x,θ︸ ︷︷ ︸

GP prior

) e.g. y = f(x,θ) + ε

I θ are hyperparameters

I The Bayesian approach (GP) automatically balances the
data-fitting with the complexity penalty.

How do GPs solve the overfitting problem (i.e. regularize)?

I Answer: Integrate over the function itself!

I This is associated with the Bayesian methodology.

I So, we will average out all possible function forms, under a
(GP) prior!

Recap:

ML: argmax
w

p(y|w, φ(x)) e.g. y = φ(x)>w + ε

Bayesian: argmax
θ

∫
f p(y|f) p(f |x,θ︸ ︷︷ ︸

GP prior

) e.g. y = f(x,θ) + ε

I θ are hyperparameters

I The Bayesian approach (GP) automatically balances the
data-fitting with the complexity penalty.

Unsupervised learning: GP-LVM

f

I If X is unobserved, treat it as a
parameter and optimize over it.

Fitting the GP-LVM

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

Fitting the GP-LVM
Figure credits: C. H. Ek

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

Fitting the GP-LVM
Figure credits: C. H. Ek

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

I Additional difficulty: x’s are also missing!

I Improvement: Invoke the Bayesian methodology to find x’s
too.

Outline

Part 1: A general view
Deep learning, Representation learning

Part 2: Gaussian processes
GPs as infinite dimensional Gaussian distributions
Overfitting, model complexity and Occam’s razor
The Bayesian advantage
Unsupervised GPs: GP-LVM

Part 3: Deep Gaussian processes
The model family
Deep Intuitions
Training / Regularization
Bayesian regularization
Multi-view modelling

Summary

Deep Gaussian processes

Y

H2

H1
I Define a recursive stacked construction

f(h)→ GP

f(h2(h1))→ stacked GP

f(h(h(h · · · (h1))))→ deep GP

Sampling from a deep GP

Yf

f

Input

Output

Unobserved

Deep GP: Step function (credits for idea to J. Hensman)

| | | | | | | (standard GP)

| | | | | | | (deep GP - 1 hidden layer)

| | | | | | |

(deep GP - 3 hidden layers)

−1 −0.5 0 0.5 1 1.5 2

−1 −0.5 0 0.5 1 1.5 2−1 −0.5 0 0.5 1 1.5 2

−1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

Deep GP with three hidden plus one warping layer

Standard GP −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

Learning “features”

Stacked GP
(nonlinear)

Stacked PCA
(linear)

MAP optimisation?

x

h1

f1

h2

f2

y

f3

I Joint Distr. = p(y|h2)p(h2|h1)p(h1|x)

I MAP optimization is extremely problematic
because:

• Dimensionality of hs has to be decided a priori

• Prone to overfitting, if h are treated as parameters

• Deep structures are not supported by the model’s
objective but have to be forced [Lawrence & Moore ’07]

I We want:

• To use the marginal likelihood as the objective:
marg. lik. =

∫
h2,h1

p(y|h2)p(h2|h1)p(h1|x)
• Further regularization tools.

Marginal likelihood is intractable

Let’s try to marginalize out the top layer only:

p(h2) =

∫
p(h2|h1)p(h1)dh1

=

∫ ∫
p(h2|f2)p(f2|h1)p(h1)df2h1

=

∫
p(h2|f2)

[∫
p(f2|h1)p(h1)dh1︸ ︷︷ ︸

Intractable!

]
df2

Intractability: h1 appears non-linearly in p(f2|h1), inside K−1 (and
also the determinant term), where K = k(h1,h1).

Solution: Variational Inference

• Similar issues arise for 1-layer models. Solution was given by
Titsias and Lawrence, 2010. A small modification to that
solution does the trick in deep GPs too.

• Extend Titsias’ method for variational learning of inducing
variables in Sparse GPs.

• Analytic variational bound F ≤ p(y|x)

• Approximately marginalise out h

• Hence obtain the approximate posterior q(h)

F = Data Fit −KL (q(h1) ‖ p(h1))︸ ︷︷ ︸
Regularisation

+

L∑
l=2

H (q(hl))︸ ︷︷ ︸
Regularisation

Additional (structural) regularization tools

Automatic structure discovery (nodes, connections, layers)

• Automatic Relevance Determination (prune nodes)

• Manifold Relevance Determination (enforce conditional
independencies, i.e. prune connections)

Automatic Relevance Determination (1 layer)

kARD(x, x
′) = αe

−
∑q

j=1

(xj−x′j)
2

2l2
j = αe−

1
2

∑q
j=1 wj(xj−x′j)2

I The lengthscale lj along input dimension j tells us how big
|xj − x′j | has to be for |f(x)− f(x′)| to be significant.

I So, when lj →∞, i.e. (wj → 0), then f varies very little as a
function of xj (i.e. dimension j becomes irrelevant).

I By optimising the whole vector w = [w1, w2, · · · , wq] we
perform automatic selection of the input features.

I In the GP-LVM / deep GP case, the input features (columns
of X) correspond to dimensions, hence we perform automatic
dimensionality detection.

Deep GP: Digits example

Demo: https://youtu.be/E8-vxt8wxBU

https://youtu.be/E8-vxt8wxBU

Multi-view modelling (Expand the model “horizontally”)

I Multi-view data arise from multiple information sources.
These sources naturally contain some overlapping, or shared
signal (since they describe the same “phenomenon”), but also
have some private signal.

I Idea: Model such data using overlapping sets of latent
variables

Demo: https://youtu.be/rIPX3CIOhKY

https://youtu.be/rIPX3CIOhKY

Multi-view modelling (Expand the model “horizontally”)

I Multi-view data arise from multiple information sources.
These sources naturally contain some overlapping, or shared
signal (since they describe the same “phenomenon”), but also
have some private signal.

I Idea: Model such data using overlapping sets of latent
variables

Demo: https://youtu.be/rIPX3CIOhKY

https://youtu.be/rIPX3CIOhKY

Multi-view modelling (Expand the model “horizontally”)

I Multi-view data arise from multiple information sources.
These sources naturally contain some overlapping, or shared
signal (since they describe the same “phenomenon”), but also
have some private signal.

I Idea: Model such data using overlapping sets of latent
variables

Demo: https://youtu.be/rIPX3CIOhKY

https://youtu.be/rIPX3CIOhKY

Deep GPs: Another multi-view example

X

−2

−1

0

1

X

.15

0.1

.05

0

.05

Automatic structure discovery

Tools:

I ARD: Eliminate uncessary nodes/connections

I MRD: Conditional independencies

I Approximating evidence: Number of layers (?)

Automatic structure discovery

Tools:

I ARD: Eliminate uncessary nodes/connections

I MRD: Conditional independencies

I Approximating evidence: Number of layers (?)

I Example: humanoid robotics

I Other examples: dynamical systems, control (NARX models),
forecasting, computational biology.

Recap

Y = f3(f2(· · · f1(X))), Hi = fi(Hi−1), fi ∼ GP

Summary

I Bayesian models with GP backbones have the potential to
achieve strong regularization.

I I focused on deep GPs as a general family of models.

I A deep GP is not a GP, but is more general.

I Supervised / unsupervised / semi-supervised learning
supported.

I Analytic computations for training need to be worked out.

I Many variants: multi-view, temporal, autoencoders...

I Future: make it scalable (first results are available)

I Future: how does it compare to / complement more
traditional deep models?

Thanks

Thanks to Neil Lawrence, Michalis Titsias, James Hensman, Carl
Henrik Ek, colleagues at Sheffield Robotics.

BACKUP SLIDES

➢ Which of the three inferences is
more probable?

➢ Which is simpler?

Bayes’ rule again

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M) =
∫
θ p(D|θ,M)p(θ|M)

(Bayesian) Occam’s Razor

“A plurality is not to be posited without necessity”. W. of Ockham

“Everything should be made as simple as possible, but not simpler”. A. Einstein

Evidence is higher for the model that is not “unnecessarily
complex” but still “explains” the data D.

Dynamics

I Dynamics are encoded in the covariance matrix K = k(t, t).

I We can consider special forms for K.

Model individual sequences Model periodic data

I https://www.youtube.com/watch?v=i9TEoYxaBxQ (missa)

I https://www.youtube.com/watch?v=mUY1XHPnoCU (dog)

I https://www.youtube.com/watch?v=fHDWloJtgk8 (mocap)

https://www.youtube.com/watch?v=i9TEoYxaBxQ
https://www.youtube.com/watch?v=mUY1XHPnoCU
https://www.youtube.com/watch?v=fHDWloJtgk8

Autoencoder example: Brendan faces

Run demo...

Autoencoder: Brendan faces (credits for idea to J. Hensman)

Dimensionality reduction: Linear vs non-linear

Image from: “Dimensionality Reduction the Probabilistic Way”, N. Lawrence, ICML tutorial 2008

Direct marginalisation of h is intractable (O o)

I New objective: p(y|x) =
∫
h2

(
p(y|h2)

∫
h1
p(h2|h1)p(h1|x)

)

Direct marginalisation of h is intractable (O o)

I New objective: p(y|x) =
∫
h2

(
p(y|h2)

∫
h1
p(h2|h1)p(h1|x)

)
I p(h2|x) =

∫
h1,f2

p(h2|f2)p(f2|h1) p(h1|x)

Direct marginalisation of h is intractable (O o)

I New objective: p(y|x) =
∫
h2

(
p(y|h2)

∫
h1
p(h2|h1)p(h1|x)

)
I p(h2|x) =

∫
h1,f2

p(h2|f2)p(f2|h1) p(h1|x)

Direct marginalisation of h is intractable (O o)

I New objective: p(y|x) =
∫
h2

(
p(y|h2)

∫
h1
p(h2|h1)p(h1|x)

)
I p(h2|x) =

∫
h1,f2

p(h2|f2) p(f2|h1)︸ ︷︷ ︸
contains

(k(h1, h1))
−1

p(h1|x)

Direct marginalisation of h is intractable (O o)

I New objective: p(y|x) =
∫
h2

(
p(y|h2)

∫
h1
p(h2|h1)p(h1|x)

)
I p(h2|x) =

∫
h1,f2

p(h2|f2)p(f2|h1) p(h1|x)

I p(h2|x, h̃1) =
∫
h1,f2,u2

p(h2|f2)p(f2|u2, h1)p(u2|h̃1)p(h1|x)

Direct marginalisation of h is intractable (O o)

I New objective: p(y|x) =
∫
h2

(
p(y|h2)

∫
h1
p(h2|h1)p(h1|x)

)
I p(h2|x) =

∫
h1,f2

p(h2|f2)p(f2|h1) p(h1|x)

I p(h2|x, h̃1) =
∫
h1,f2,u2

p(h2|f2)p(f2|u2, h1)p(u2|h̃1)p(h1|x)

I log p(h2|x, h̃1)≥
∫
h1,f2,u2

Q log p(h2|f2)p(f2|u2,h1)p(u2|h̃1)p(h1|x)Q

Direct marginalisation of h is intractable (O o)

I New objective: p(y|x) =
∫
h2

(
p(y|h2)

∫
h1
p(h2|h1)p(h1|x)

)
I p(h2|x) =

∫
h1,f2

p(h2|f1)p(f1|h1) p(h1|x)

I p(h2|x, h̃1) =
∫
h1,f2,u2

p(h2|f2)p(f2|u2, h1)p(u1|h̃1)p(h1|x)

I log p(h2|x, h̃1)≥
∫
h1,f2,u2

Q log p(h2|f2)(((((p(f2|u2,h1)p(u2|h̃1)p(h1|x)
Q=(((((p(f2|u2,h1)q(u2)q(h1)

Direct marginalisation of h is intractable (O o)

I New objective: p(y|x) =
∫
h2

(
p(y|h2)

∫
h1
p(h2|h1)p(h1|x)

)
I p(h2|x) =

∫
h1,f2

p(h2|f2)p(f2|h1) p(h1|x)

I p(h2|x, h̃1) =
∫
h1,f2,u2

p(h2|f2)p(f2|u2, h1)p(u2|h̃1)p(h1|x)

I log p(h2|x, h̃1)≥
∫
h1,f2,u2

Q log p(h2|f2)(((((p(f2|u2,h1)p(u2|h̃1)p(h1|x)
Q=(((((p(f2|u2,h1)q(u2)q(h1)

I log p(h2|x, h̃1)≥
∫
h1,f2,u2

Q log p(h2|f2)p(u2|h̃1)p(h1|x)Q=q(u2)q(h1)

p(u2|h̃1) contains k(h̃1, h̃1)
−1

The above trick is applied to all layers simultaneously.

Inducing points: sparseness, tractability and Big Data

h(1) f (1)

h(2) f (2)

· · · · · ·
h(30) f (30)

h(31) f (31)

· · · · · ·
h(N) f (N)

Inducing points: sparseness, tractability and Big Data

h(1) f (1)

h(2) f (2)

· · · · · ·
h(30) f (30)

h̃(i) u(i)

h(31) f (31)

· · · · · ·
h(N) f (N)

Inducing points: sparseness, tractability and Big Data

h(1) f (1)

h(2) f (2)

· · · · · ·
h(30) f (30)

h̃(i) u(i)

h(31) f (31)

· · · · · ·
h(N) f (N)

I Inducing points originally introduced for faster (sparse) GPs

I But this also induces tractability in our models, due to the
conditional independencies assumed

I Viewing them as global variables
⇒ extension to Big Data [Hensman et al., UAI 2013]

Factorised vs non-factorised bound

I Preliminary bound

L ≤ log p(Y, {Hl}Ll=1|{Ul}L+1
l=1 ,X)

L =

N∑
n=1

[
L∑
l=1

(
Ql∑
q=1

logN
(
h
(n,q)
l |k(n,:)

l K−1u
(:,d)
l , β−1

l I
)

−
β−1

l k̃
(n)
l

2

)]

=

N∑
n=1

L∑
l=1

Ql∑
q=1

Ln,ql

I Fully factorised.

SVI for factorised deep GPs

x(n)

h
(n)
1

u1

h
(n)
2

u2

y(n)u3

n = 1...N

I We can additionally marginalise out h and
maintain factorisation.

I We can consider SVI.

I Unlike θu and θ, h are not global variables.

I So, estimate h(batch) given the current θt

I Adjusting the step-length for SVI is tricky.

SVI - 18K mocap examples

Hidden space projections:

Global motion features Clustered motion features

Integrate out u

x(n)

h
(n)
1

u1

h
(n)
2

u2

y(n)u3

n = 1...N

Integrate out u

x(n)

h
(n)
1

h
(n)
2

y(n)

n = 1...N

I Integrating out u→ factorisation is
maintained.

I “Effect” of u manifested through q(u)

“Collapse” q(u)

I Collapsing u’s distribution eliminates many
variational parameters

I But this introduces coupling and breaks the
factorisation

I But we can still distribute the computations
efficiently (work by Y. Gal, Z. Dai)

	Part 1: A general view
	Deep learning, Representation learning

	Part 2: Gaussian processes
	GPs as infinite dimensional Gaussian distributions
	Overfitting, model complexity and Occam's razor
	The Bayesian advantage
	Unsupervised GPs: GP-LVM

	Part 3: Deep Gaussian processes
	The model family
	Deep Intuitions
	Training / Regularization
	Bayesian regularization
	Multi-view modelling

	Summary

