
Introduction to deep learning

Andreas Damianou

Amazon, Cambridge, UK

Royal Statistical Society, London
13 Dec. 2018

Notebook

http://adamian.github.io/talks/Damianou_DL_tutorial_18.ipynb

http://adamian.github.io/talks/Damianou_DL_tutorial_18.ipynb

Starting with a cliché...

Starting with a cliché...

Starting with a cliché...

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector wl. E.g. for 2 layers:

fnet = h2(h1(x;w1);w2).

Generally fnet : x 7→ y with:

h1 = ϕ(xw1 + b1)

h2 = ϕ(h1w2 + b2)

· · ·
ŷ = ϕ(hL−1wL + bL)

φ is the (non-linear) activation function.

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector wl. E.g. for 2 layers:

fnet = h2(h1(x;w1);w2).

Generally fnet : x 7→ y with:

h1 = ϕ(xw1 + b1)

h2 = ϕ(h1w2 + b2)

· · ·
ŷ = ϕ(hL−1wL + bL)

φ is the (non-linear) activation function.

Defining the loss

I We have our function approximator fnet(x) = ŷ

I We have to define our loss (objective function) to relate this function outputs to
the observed data.

I E.g. squared difference
∑

n(yn − ŷn)2 or cross-entropy

Probabilistic re-formulation

I Training minimizing loss:

argmin
w

1

2

N∑
i=1

(fnet(w, xi)− yi)2︸ ︷︷ ︸
fit

+λ
∑
i

‖ wi ‖︸ ︷︷ ︸
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax
w

log p(y|x,w)︸ ︷︷ ︸
fit

+ log p(w)︸ ︷︷ ︸
regularizer

where p(y|x,w) ∼ N and p(w) ∼ Laplace

I Optimization still done with back-prop (i.e. gradient descent).

Probabilistic re-formulation

I Training minimizing loss:

argmin
w

1

2

N∑
i=1

(fnet(w, xi)− yi)2︸ ︷︷ ︸
fit

+λ
∑
i

‖ wi ‖︸ ︷︷ ︸
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax
w

log p(y|x,w)︸ ︷︷ ︸
fit

+ log p(w)︸ ︷︷ ︸
regularizer

where p(y|x,w) ∼ N and p(w) ∼ Laplace

I Optimization still done with back-prop (i.e. gradient descent).

Graphical depiction

Optimization

One layer:

Loss =
1

2
(h− y)2

h = φ(xw)

ϑLoss

ϑw
= (y − h)︸ ︷︷ ︸

ε

ϑφ(xw)

ϑw

Two layers:

Loss =
1

2
(h2 − y)2

h2 = φ

φ(xw0)︸ ︷︷ ︸
h1

w1


ϑLoss

ϑw0
= · · ·

ϑLoss

ϑw1
= · · ·

Derivative w.r.t w1

ϑ(h2 − y)2

ϑw1
= −21

2
(h2 − y)

ϑh2

ϑw1
=

= (y − h2)
ϑφ(h1w1)

ϑw1
=

= (y − h2)
ϑφ(h1w1)

ϑh1w1

ϑh1w1

ϑw1
=

= (y − h2)︸ ︷︷ ︸
ε2

ϑφ(h1w1)

ϑh1w1︸ ︷︷ ︸
g1

hT1

h1 is computed during the forward pass.

Derivative w.r.t w0

ϑ(h2 − y)2

ϑw0
= −21

2
(h2 − y)

ϑh2

ϑw0
=

= (y − h2)
ϑφ(h1w1)

ϑh1w1

ϑh1w1

ϑh1

ϑh1

ϑw0
=

= ε2 g1 w
T
1

ϑφ(xw0)

xw0

ϑxw0

ϑw0
=

= ε2 g1 w
T
1

ϑφ(xw0)

ϑxw0︸ ︷︷ ︸
g0

xT

Propagation of error is just the chain rule.

Go to notebook!

Automatic differentiation

Example: f(x1, x2) = x1
√

log x1
sin(x22)

has symbolic graph:

(image: sanyamkapoor.com)

A NN in mxnet

Back to notebook!

We’re far from done...

I How to initialize the (so many) parameters?

I How to pick the right architecture?

I Layers and parameters co-adapt.

I Multiple local optima in optimization surface.

I Numerical problems.

I Bad behaviour of composite function (e.g. problematic gradient distribution).

I OVERFITTING

Curve fitting [skip]

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

Taming the dragon

← my neural network

← me

How to make your

neural network do

what you want it to do?

Lottery ticket hypothesis

Might provide intuition for many of the tricks used.

I Optimization landscape: multiple optima and difficult to navigate

I Over-parameterized networks contain multiple sub-networks (“lottery tickets”)

I “Winning ticket”: a lucky sub-network found a good solution

I Over-parameterization: more tickets, higher winning probability

I Of course this means we have to prune or at least regularize.

(Frankle and Carbin (2018))

“Tricks”

I Smart initializations

I ReLU: better behaviour of gradients

I Early stopping: prevent overfitting

I Dropout

I Batch-normalization

I Transfer/meta-learning/BO: guide the training with another model

I many other “tricks”

Vanishing and exploding gradients

ϑ(h2 − y)2

ϑw0
= −21

2
(h2 − y)

ϑh2

ϑw0
=

= (y − h2)
ϑφ(h1w1)

ϑh1w1

ϑh1w1

ϑh1

ϑh1

ϑw0
=

= ε2 g1 w
T
1

ϑφ(xw0)

xw0

ϑxw0

ϑw0
=

= ε2 g1 w
T
1

ϑφ(xw0)

ϑxw0︸ ︷︷ ︸
g0

xT

I ReLU: an activation function leading to well-behaved gradients.

Vanishing and exploding gradients

ϑ(h2 − y)2

ϑw0
= −21

2
(h2 − y)

ϑh2

ϑw0
=

= (y − h2)
ϑφ(h1w1)

ϑh1w1

ϑh1w1

ϑh1

ϑh1

ϑw0
=

= ε2 g1 w
T
1

ϑφ(xw0)

xw0

ϑxw0

ϑw0
=

= ε2 g1 w
T
1

ϑφ(xw0)

ϑxw0︸ ︷︷ ︸
g0

xT

I ReLU: an activation function leading to well-behaved gradients.

Early stopping

(image: deeplearning4j.org)

Dropout

Dropout
======⇒

I Randomly drop units during training.

I Prevents units from co-adapting too much and prevents overfitting.

Batch-normalization

I Normalize each layer’s output so e.g. µ = 0, σ = 1

I Reduces covariate shift (data distribution changes)

I Less co-adaptation of layers

I Overall: faster convergence

Meta-learning

I Optimize the neural network model with the help of another model.

I The helper model might be allowed to learn from multiple datasets.

(image: Rusu et al. 2018 - LEO)

Bayesian HPO

I Hyperparameters: learning rate, weight decay, architectures, learning protocols

I Optimize them using Bayesian optimization

I Prediction of learning curves. Can speed up HPO in a bandit setting

I Example: https://xfer.readthedocs.io/en/master/demos/xfer-hpo.html

https://xfer.readthedocs.io/en/master/demos/xfer-hpo.html

Convolutional NN

(image: towardsdatascience.com)

Recurrent NN

image: towardsdatascience.com

Deployment: Transfer learning

Training neural networks from scratch is not practical as this requires:

I a lot of data

I expertise

I compute (e.g. GPU machines)

Solution:

I Transfer learning. Repurposing pre-trained neural networks to solve new tasks.

I A library for transfer learning: https://github.com/amzn/xfer

Go to Notebook!

https://github.com/amzn/xfer

Deployment: Transfer learning

Training neural networks from scratch is not practical as this requires:

I a lot of data

I expertise

I compute (e.g. GPU machines)

Solution:

I Transfer learning. Repurposing pre-trained neural networks to solve new tasks.

I A library for transfer learning: https://github.com/amzn/xfer

Go to Notebook!

https://github.com/amzn/xfer

Bayesian deep learning

We saw that optimizing the parameters is a challenge.
Why not marginalize them out completely?

Probabilistic re-formulation

I Training minimizing loss:

argmin
w

1

2

N∑
i=1

(fnet(w, xi)− yi)2︸ ︷︷ ︸
fit

+λ
∑
i

‖ wi ‖︸ ︷︷ ︸
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax
w

log p(y|x,w)︸ ︷︷ ︸
fit

+ log p(w)︸ ︷︷ ︸
regularizer

where p(y|x,w) ∼ N and p(w) ∼ Laplace

I Optimization still done with back-prop (i.e. gradient descent).

Integrating out weights

D := (x,y)

p(w|D) =
p(D|w)p(w)

p(D) =
∫
p(D|w)p(w)dw

Inference

I p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in
which w appears through g.

I Attempt at variational inference:

KL (q(w; θ) ‖ p(w|D))︸ ︷︷ ︸
minimize

= log(p(D))− L(θ)︸︷︷︸
maximize

where
L(θ) = Eq(w;θ)[log p(D,w)]︸ ︷︷ ︸

F

+H [q(w; θ)]

I Term in red is still problematic. Solution: MC.

I Such approaches can be formulated as black-box inferences.

Inference

I p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in
which w appears through g.

I Attempt at variational inference:

KL (q(w; θ) ‖ p(w|D))︸ ︷︷ ︸
minimize

= log(p(D))− L(θ)︸︷︷︸
maximize

where
L(θ) = Eq(w;θ)[log p(D,w)]︸ ︷︷ ︸

F

+H [q(w; θ)]

I Term in red is still problematic. Solution: MC.

I Such approaches can be formulated as black-box inferences.

Inference

I p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in
which w appears through g.

I Attempt at variational inference:

KL (q(w; θ) ‖ p(w|D))︸ ︷︷ ︸
minimize

= log(p(D))− L(θ)︸︷︷︸
maximize

where
L(θ) = Eq(w;θ)[log p(D,w)]︸ ︷︷ ︸

F

+H [q(w; θ)]

I Term in red is still problematic. Solution: MC.

I Such approaches can be formulated as black-box inferences.

Bayesian neural network (what we saw before)

Y

H

ϕ ϕ ϕ. . .

...

H

X

ϕ ϕ ϕ. . .

From NN to GP

Y

H
G

ϕ ϕ ϕ.

...

H
G

X

ϕ ϕ ϕ.
I NN: H2 = W2φ(H1)

I GP: φ is ∞−dimensional so:
H2 = f2(H1; θ2) + ε

I NN: p(W)

I GP: p(f(·))

From NN to GP

Y

H
G

ϕ ϕ ϕ.

...

H
G

X

ϕ ϕ ϕ.
I NN: H2 = W2φ(H1)

I GP: φ is ∞−dimensional so:
H2 = f2(H1; θ2) + ε

I NN: p(W)

I GP: p(f(·))

Summary

I Vanilla feedforward NN with backpropabation (chain rule)

I Automatic differentiation

I Practical issues and solutions (“tricks”)

I Understanding the challenges: optimization landscape and capacity

I ConvNets and RNNs

I Transfer Learning for practical use

I Bayesian NNs

Conclusions

I NNs are mathematically simple; challenge is in how to optimize them.

I Data efficiency? Uncertainty calibration? Interpretability? Safety? ...

	Efficient Optimization
	Other kinds of NNs
	Transfer learning
	Bayesian deep learning

