amazoncom

(Introduction to deep learning

Andreas Damianou

Amazon, Cambridge, UK

Royal Statistical Society, London
13 Dec. 2018

Notebook

http://adamian.github.io/talks/Damianou_DL_tutorial_18.ipynb

http://adamian.github.io/talks/Damianou_DL_tutorial_18.ipynb

Starting with a cliché...

Google Trends

351

301

251

201

15 A

10 A

—— deep learning

Starting with a cliché...

Google Trends

100 1 — deep learning
—— machine learning

Starting with a cliché...

Google Trends

100 1 — deep learning
—— machine learning
—— neural network

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector w;. E.g. for 2 layers:

fret = ha(h1(x;w1); wa).

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector w;. E.g. for 2 layers:

fret = ha(h1(x;w1); wa).

Generally fhet : x — y with:

h; = p(xwy +b1)
hg = gO(h1W2 + bg)

y =plhr_ywr +br)

¢ is the (non-linear) activation function.

Defining the loss

» We have our function approximator fret(z) =¥

» We have to define our loss (objective function) to relate this function outputs to
the observed data.

» E.g. squared difference 3", (yn — 9n)? or cross-entropy

Probabilistic re-formulation

» Training minimizing loss:

N
.1
segmin 5 32 (el = 40)* 433w |
i= %

fit regularizer

Probabilistic re-formulation

» Training minimizing loss:

N
.1
segmin 5 32 (el = 40)* 433w |
i= %

fit regularizer

» Equivalent probabilistic view for regression, maximizing posterior probability:

arg max log p(y|x, w) +log p(w)
W ae—ee———— e——
fit regularizer

where p(y|x,w) ~ N and p(w) ~ Laplace

» Optimization still done with back-prop (i.e. gradient descent).

Graphical depiction

C
A

3
..,)ﬂ XL \X X/
L %
/ WAA

e
N/
vl
2,

J
%

A
)
A
v

R
(W%\V//
O—0—=20

A >¢0 YN
\)

XX ».»1
V. { X7\
X

N

Optimization

One layer:

1
Loss = i(h —y)?

h = ¢(xw)
YLoss Vp(xw)
9w u vw

€

Two layers:

1
Loss = i(hg —y)?

hy = ¢ | p(xwo) w1
~———
h;
Y Loss
’l9W0
v Loss
’l9W1

Derivative w.r.t w;

b)t L,y e
=(y— h2)w -
=(y— hQ)ﬁ?;(hhllwvil) 191}91‘17::1 N
Jo(hiw

g1

h; is computed during the forward pass.

Derivative w.r.t wy

I(hy — y)?
’l9W0

1 Uhs
5(h2 —y) —
’l9(/)(h1W1) 79h1W1 ’l9h1
= — h -
(y 2) ’19h1W1 191’11 19W0
7 Yo(xwg) Ixwy

= €9 gl A% _— =
1 Xxwgy Uwy

Yo (xw
= €2 01 W{ 7¢(0) XT
Ixw

90

Propagation of error is just the chain rule.

Go to notebook!

Automatic differentiation

Example: f(z1,22) = 21, /log smfflx%) has symbolic graph:

X4

o v)

> Vg » f(x1,X2)

X2

(image: sanyamkapoor.com)

A NN in mxnet

Back to notebook!

We're far from done...

» How to initialize the (so many) parameters?
» How to pick the right architecture?

» Layers and parameters co-adapt.

» Multiple local optima in optimization surface.
» Numerical problems.

» Bad behaviour of composite function (e.g. problematic gradient distribution).

» OVERFITTING

Curve fitting [skip]

X Xyexpx XXy o

Taming the dragon

< my neural network

How to make your
neural network do

what you want it to do?

Lottery ticket hypothesis

Might provide intuition for many of the tricks used.

» Optimization landscape: multiple optima and difficult to navigate

v

Over-parameterized networks contain multiple sub-networks (“lottery tickets")

v

“Winning ticket”: a lucky sub-network found a good solution

v

Over-parameterization: more tickets, higher winning probability

v

Of course this means we have to prune or at least regularize.

(Frankle and Carbin (2018))

“Tricks”

Smart initializations

v

» RelU: better behaviour of gradients

» Early stopping: prevent overfitting

» Dropout

» Batch-normalization

» Transfer/meta-learning/BO: guide the training with another model

» many other “tricks”

Vanishing and exploding gradients

19(1’12 — y)2 1 19h2
—— 2 — 9 (hy—y)—— =
’L9W0 2(2 y) ’19W0
’l9¢(h1W1) 79h1W1 ’l9h1
= — h =
(y 2) ’l9h1W1 19h1 ’19W0
Yo(xwp) ¥xw
- p(xwo) Uxwo

Xwgy Uwp

Yop(xw
R Uo(xwo) 7
YxwWy

90

Vanishing and exploding gradients

1 vhsy
2(2 y>19wo
’l9q5(h1W1) 79h1W1 ’l9h1
= — h =
(y 2) ’l9h1W1 19h1 ’I9W0
Vo(xwp) Uxw
- p(xwo) Uxwo

I(hy —y)?
19W0

Xwgy Uwp
Yop(xw
R Uo(xwo) 7
YxwWy

90

» RelLU: an activation function leading to well-behaved gradients.

Early stopping

A Training Set Accuracy

Accuracy

Overfitting

}

Test Set Accuracy Early Stopping

Epoch

Dropout

_,.‘.,.‘Q
//f‘\\)//(‘\\
.;' 5.‘5' 5.‘

N 8,

L R

.} »o»?'.\!o»o%b'.
AN AN
N 0

CYARY BAXS

TAN

» Randomly drop units during training.

» Prevents units from co-adapting too much and prevents overfitting.

Batch-normalization

» Normalize each layer's output soe.g. u=0,0 =1
» Reduces covariate shift (data distribution changes)
> Less co-adaptation of layers
» Overall: faster convergence

Meta-learning

» Optimize the neural network model with the help of another model.

» The helper model might be allowed to learn from multiple datasets.

------ data-dependent init

Dgr fa adaptation
. "t =---decoding
DQ e Mg
’
T
A B
o) :
9 2

(image: Rusu et al. 2018 - LEO)

Bayesian HPO

» Hyperparameters: learning rate, weight decay, architectures, learning protocols

v

Optimize them using Bayesian optimization

v

Prediction of learning curves. Can speed up HPO in a bandit setting

v

Example: https://xfer.readthedocs.io/en/master/demos/xfer-hpo.html

https://xfer.readthedocs.io/en/master/demos/xfer-hpo.html

Convolutional NN

((1x3)+(0x0)+(1x1)+

m
v
s
el
x
oz
+ o+
o=
»x
se
+ +
NN
L
oA

AW
A VAW
AN A\
AN
/////////

Destination pixel

/
3
_—
/
|1
2
1 |1
0
|]
Convolution filter

(Sobel Gx)

Source pixel

(image: towardsdatascience.com)

Recurrent NN

Recurrent Neural Network Feed-Forward Neural Network

image: towardsdatascience.com

Deployment: Transfer learning

Training neural networks from scratch is not practical as this requires:

» a lot of data
> expertise

» compute (e.g. GPU machines)

Solution:

» Transfer learning. Repurposing pre-trained neural networks to solve new tasks.

» A library for transfer learning: https://github.com/amzn/xfer

https://github.com/amzn/xfer

Deployment: Transfer learning

Training neural networks from scratch is not practical as this requires:

» a lot of data
> expertise

» compute (e.g. GPU machines)
Solution:

» Transfer learning. Repurposing pre-trained neural networks to solve new tasks.

» A library for transfer learning: https://github.com/amzn/xfer

Go to Notebook!

https://github.com/amzn/xfer

Bayesian deep learning

We saw that optimizing the parameters is a challenge.
Why not marginalize them out completely?

Probabilistic re-formulation

» Training minimizing loss:

arg min - Z Jret(W, ;) +)\Z | wi ||

fit regularizer

» Equivalent probabilistic view for regression, maximizing posterior probability

arg max log p(y|x, w) +log p(w)
~—_———— N—

fit regularizer

where p(y|x, w) ~ N and p(w) ~ Laplace

» Optimization still done with back-prop (i.e. gradient descent)

Integrating out weights

p(D|w)p(w)

~ p(D) = [p(Dlw)p(w)dw

Inference

» p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in
which w appears through g.

Inference

» p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in
which w appears through g.

» Attempt at variational inference:

KL (q(w; 0) || p(w| D)) = log(p(D)) — i@

minimize maximize

where
ﬁ(e) = Eq(u;:ﬂ) [log p(D* UJ)] +H [Q(UJ7 0)]
.F

Inference

» p(D) (and hence p(w|D)) is difficult to compute because of the nonlinear way in
which w appears through g.

» Attempt at variational inference:

KL (q(w; 0) || p(w| D)) = log(p(D)) — i@

minimize maximize

where
ﬁ(e) = Eq(u;:ﬂ) [log p(D* UJ)] +H [Q(UJ7 0)]
.F

» Term in red is still problematic. Solution: MC.

» Such approaches can be formulated as black-box inferences.

Bayesian neural network (what we saw before)

From NN to GP

(» NN: H2:W2¢(H1)
i

G /\ » GP: ¢ is co—dimensional so:

Hy = fo(Hy;02) + e
‘e
>
Y

From NN to GP

<
= /\ » NN: p(W)
(’ > GP: p(f("))
‘\9

v

NN: HQ = Wg(b(Hl)

G /\ » GP: ¢ is co—dimensional so:
Hy = fo(Hy;02) + e

Summary

» Vanilla feedforward NN with backpropabation (chain rule)

» Automatic differentiation

» Practical issues and solutions (“tricks")

» Understanding the challenges: optimization landscape and capacity
» ConvNets and RNNs

» Transfer Learning for practical use

» Bayesian NNs

Conclusions

» NNs are mathematically simple; challenge is in how to optimize them.

» Data efficiency? Uncertainty calibration? Interpretability? Safety? ...

	Efficient Optimization
	Other kinds of NNs
	Transfer learning
	Bayesian deep learning

