

Dimensionality Reduction & Latent Variable Modelling

Andreas Damianou

University of Sheffield, UK

Workshop on Data Science in Africa, 17th June, 2015 Dedan Kimathi University of Technology, Kenya

Working with data

- Data-science: everything revolves around a
 dataset
- Dataset: the set of data (to be) collected for our algorithms to learn from
- Example: animals dataset

Working with data

- Data-science: everything revolves around a
 dataset
- Dataset: the set of data (to be) collected for our algorithms to learn from
- Example: animals dataset

Working with data

- Data-science: everything revolves around a
 dataset
- Dataset: the set of data (to be) collected for our algorithms to learn from
- Example: animals dataset

What is "dimensionality"?

• Simply, the number of features *used* for describing each instance.

• In the previous example: height and width.

• The number of features depends on our selection or limitations during data collection.

Notation

It's convenient to use notation from linear algebra.

$$Y = \begin{bmatrix} y_{1,1} & y_{1,2} & \dots & y_{1,d} \\ y_{2,1} & y_{2,2} & \dots & y_{2,d} \\ \vdots & \vdots & \vdots \\ y_{n,1} & y_{n,2} & \dots & y_{n,d} \end{bmatrix}$$

n rows \rightarrow *n* instances

d columns \rightarrow d features (dimensions)

So, the matrix Y containsd-dimensional data

High-dimensional data

- Data having large number of features, d
- Examples
 - Micro-array data
 - Images

Properties of high-dimensional data

Properties of high-dimensional data

Non-British people

British people

Name	Height
Neil: John: Mike: Ciira: Andreas:	1.97 1.94 1.89 1.76 1.74

Name	Height
Neil: John: Mike: Ciira:	1.97 1.94 1.89 1.76
Andreas:	1.74

♥

Name	Height
Neil: John: Mike: Ciira: Andreas:	1.97 1.94 1.89 1.76 1.74
	1

Nearest neighbour classification for a new instance y*

Distance from C to M: $sqrt((C_h - M_h)^2) = 0.0009$

Adding another feature: weight

Distance from C to M: $sqrt((C_h - M_h)^2 + (C_w - M_w)^2) = 16$

Adding another feature: "beardness"

Distance from C to M: $sqrt((C_h - M_h)^2 + (C_w - M_w)^2 + (C_b - M_b)^2) = 65$

Adding another feature: "beardness"

Distance from C to M: $sqrt((C_h - M_h)^2 + (C_w - M_w)^2 + (C_b - M_b)^2) = 65$

Show demo!! (humanClassif)

• What happens as the dimensionality grows?

• Why is that a problem?

• Is that always a problem?

- What happens as the dimensionality grows?
 - Distances grow bigger
 - Everything seems to be spread apart
- Why is that a problem?

• Is that always a problem?

- What happens as the dimensionality grows?
 - Distances grow bigger
 - Everything seems to be spread apart
- Why is that a problem?
 - Think about doing nearest neighbour classification. For a test instance, everything would just be super far...
- Is that always a problem?

- What happens as the dimensionality grows?
 - Distances grow bigger
 - Everything seems to be spread apart
- Why is that a problem?
 - Think about doing nearest neighbour classification. For a test instance, everything would just be super far...
- Is that always a problem?
 - No, but with real, "dirty" data, it can often be

- What happens as the dimensionality grows?
 - Distances grow bigger
 - Everything seems to be spread apart
- Why is that a problem?
 - Think about doing nearest neighbour classification. For a test instance, everything would just be super far...
- Is that always a problem?
 - No, but with real, "dirty" data, it can often be
- Another problem we'll see later: *noise in the data*

- Pre-process data for another task (e.g. classification)
- Compression (lossy)
- Visualisation
- Data understanding / clearing

- Pre-process data for another task (e.g. classification)
- Compression (lossy)
- Visualisation
- Data understanding / clearing

Compression

$$Y = \begin{bmatrix} h_{1} & w_{1} & h_{1} + w_{1} \\ h_{2} & w_{2} & h_{2} + w_{2} \\ h_{3} & w_{3} & h_{3} + w_{3} \\ h_{4} & w_{4} & h_{4} + w_{4} \\ h_{5} & w_{5} & h_{5} + w_{5} \end{bmatrix}$$

- Pre-process data for another task (e.g. classification)
- Compression (lossy)
- Visualisation
- Data understanding / clearing

Clustering vs Dimensionality Reduction

Dimensionality reduction in action

1st way: One solution is to just drop one of the features

Dimensionality reduction in action

2nd way: Another solution is to transform the two features into one

Dimensionality reduction in action

Another solution is to transform the two features to one

Principal Component Analysis

Run demo!!

(pcaPlot)

Eigendecomposition

• Gives a feeling of the properties of the matrix

Eigendecomposition

• Gives a feeling of the properties of the matrix

- u1 and u2 define the axes with maximum variances, where the data is most spread
- To reduce the dimensionality I project the data on the axis where data is the most spread
- There is no class information given

• We need to optimise in order to minimise the distance between the true point and its reconstruction:

```
x^* = \underset{x}{\operatorname{argmin}} \| y - \operatorname{rec}(x) \|_2
y is 1 times d
x is 1 times q
```

- *rec(x)* = *x W*′
- \cdot What is the dimensionality of *W*?
- · Answer: *d times q*
- Then: x = y W. Now W is q times d.
- \cdot We can determine both x and W by solving an optimisation problem (called eigenvalue problem)

• When class labels are given, PCA cannot take them into account... but we hope that the natural separation of the data (see clustering) will encode this information

Principal Component Analysis

- · Remember: data are noisy!
- · Trade-off: reduce size / noise without losing too much information

In discriminant analysis, we want to maximise the spread between classes.

Latent variable models

• Non-probabilistic approach:

• Probabilistic approach:

Learn "backwards": <u>Model</u> the relationship between Y and X:

p(Y|X). This comes from: $y = wx + \varepsilon$

Then, we can get the posterior distribution:

p(X|Y)

Linear vs Non-linear

(Slide from Neil Lawrence.)