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Working with data

● Data-science: everything revolves around a 
   dataset

● Dataset: the set of data (to be) collected for our 
algorithms to learn from

● Example: animals dataset
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What is “dimensionality”?

● Simply, the number of features used for 
describing each instance.

● In the previous example: height and width.

● The number of features depends on our 
selection or limitations during data collection.



  

Notation

It's convenient to use notation from linear algebra.
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n rows      → n instances

d columns → d features (dimensions)

 So, the matrix Y containsd-dimensional data



  

High-dimensional data

● Data having large number of features, d
● Examples

– Micro-array data

– Images
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Properties of high-dimensional data



  

Properties of high-dimensional data

British peopleNon-British people



  

Name Height

Neil:    1.97
John:  1.94
Mike:   1.89
Ciira:   1.76
Andreas:  1.74

1.70                1.80     1.90 2.00    

A    C                           M         J     N
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Name Height

Neil:    1.97
John:  1.94
Mike:   1.89
Ciira:   1.76
Andreas:  1.74

1.70                1.80     1.90 2.00    

A    C                           M         J     Ny*
Nearest neighbour 
classification for a new 
instance y*

Distance from C to M: sqrt((C_h – M_h)^2) = 0.0009 



  

Adding another feature: weight
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Distance from C to M: sqrt((C_h – M_h)^2 + (C_w – M_w)^2) = 16  



  

Adding another feature: “beardness”

Distance from C to M: sqrt((C_h – M_h)^2 + (C_w – M_w)^2 + (C_b – M_b)^2 ) = 65 
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Adding another feature: “beardness”

Distance from C to M: sqrt((C_h – M_h)^2 + (C_w – M_w)^2 + (C_b – M_b)^2 ) = 65 
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Show demo!!       (humanClassif)
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The (potential) problem

● What happens as the dimensionality grows?
– Distances grow bigger

– Everything seems to be spread apart

● Why is that a problem?
– Think about doing nearest neighbour classification. For a test 

instance, everything would just be super far...         

● Is that always a problem?
– No, but with real, “dirty” data, it can often be                         

–

● Another problem we'll see later: noise in the data



  

Why do dimensionality reduction?
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● Pre-process data for another task (e.g. 
classification)

● Compression (lossy)

● Visualisation

● Data understanding / clearing
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Compression
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Why do dimensionality reduction?

● Pre-process data for another task (e.g. 
classification)

● Compression (lossy)

● Visualisation

● Data understanding / clearing



  

Spring-ball example

On the board!



  

Clustering vs Dimensionality 
Reduction

Dimensionality 
    Reduction

Clustering

n x d matrix
m x d matrix

m < n

n x k matrix

k < d



  

Dimensionality reduction in action

1st way: One solution is to just drop one of the features
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Dimensionality reduction in action

2nd way: Another solution is to transform the two features into one

h
h
h
h
h

w
w
w
w
w

Y = 

height      weight

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

s
s
s
s
s

X'' = 

size 

1
2
3
4
5

1
2
3
4
5

h

w

s

A

A

D

C

E

B

BC DE
s = f(h,w)



  

Dimensionality reduction in action

Another solution is to transform the two features to one
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But how do we find s?



  

Principal Component Analysis

Run demo!!           (pcaPlot)



  

Eigendecomposition

● Gives a feeling of the properties of the matrix
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Eigendecomposition

● Gives a feeling of the properties of the matrix
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● u1 and u2 define the axes with maximum variances,  where the data is most spread 

● To reduce the dimensionality I project the data on the axis where data is the most 
spread

● There is no class information given 
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● We need to optimise in order to minimise the distance between 
the true point and its reconstrcution:

x* = argmin || y – rec(x) ||
x

2

y is 1 times d 
x is 1 times q

● rec(x) = x W'

• What is the dimensionality of W'?
• Answer: d times q

• Then: x = y W.  Now W is q times d.

• We can determine both x and W by solving an optimisation 
problem (called eigenvalue problem)



  

● When class labels are given, PCA cannot take them into account... 
but we hope that the natural separation of the data (see clustering) 
will encode this information
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Principal Component Analysis

• Remember: data are noisy!
• Trade-off: reduce size / noise without losing too much information

2D  →  1D 3D  →   2D



  

But what about this case...
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But what about this case...
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In discriminant analysis, we want to maximise the spread between classes.



  

Latent variable models

● Non-probabilistic approach:

 

● Probabilistic approach:

Learn “backwards”: Model the relationship between Y and X: 

p(Y|X). This comes from: y = wx + ε

Then, we can get the posterior distribution:

p(X|Y)

Y X



  

Linear vs Non-linear

(Slide from Neil Lawrence.)
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