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» Which curve fits the data better?
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» Which curve fits the data better?
» Which curve is more “complex”?

» Which curve is better overall?

Need a good balance between data fit vs overfitting!



How do GPs solve the overfitting problem?
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» Answer: Integrate over the function itself!
» This is associated with the Bayesian methodology.

» So, we will average out all possible function forms, under a
(GP) prior!
Recap:

ML: argmax p(y|w, ¢(x)) eg. y=0(x)"'w+e
w
Bayesian: argmax [ p(y|f) p(f]x,0) eg y=f(x,0)+e¢
(4 N~—
GP prior
» O are hyperparameters

» The Bayesian approach (GP) automatically balances the
data-fitting with the complexity penalty.



Next: More intuition on...

» What does it mean to follow a Bayesian approach?

» What does it have to do with (avoiding) overfitting and
controlling model complexity?
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Bayesian approach

Assume a hypothesis (model) M and a distribution for its
parameters, 6.

» Assume a prior distribution for our parameters, 6.

» Assume a likelihood for the observed data, D, given the
parameters.

» Find the of the parameters, given the data.
» The normaliser of the posterior is the model evidence.

» All linked through Bayes’ rule:

_ p(D]0, M)p(6|M)
p(DIM) = [, p(D]6, M)p(6|M)

» Next: See how this relates to model complexity.






> Which of the three inferences is
more probable?

> Which is simpler?

L
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Bayes' rule again

p(6|D, M) = p(D|0, M)p(6| M)

p(DIM) = [, p(D]8, M)p(dI M)



(Bayesian) Occam’s Razor
“A plurality is not to be posited without necessity”. W. of Ockham
“Everything should be made as simple as possible, but not simpler”. A. Einstein

A Copyright: David J. C. MacKay

P (Dlm)

D
all possible datasets of size n

Evidence is higher for the model that is not “unnecessarily
complex” but still “explains” the data D.
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Fitting the GP-LVM
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Fitting the GP-LVM

Figure credits: C. H. Ek
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Fitting the GP-LVM

Figure credits: C. H. Ek
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» Additional difficulty: x's are also missing!

» Improvement: Invoke the Bayesian methodology to find z's
too.



Bayesian GP-LVM

GP-LVM objective:
» argmax p(y|x, ), where p(y|x,0) = [; p(y|f)p(f|x, )

X

» Bayesian w.r.t f, MAP/ML w.r.t x.

Bayesian GP-LVM objective:
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» fully Bayesian.

[Titsias & Lawrence. “Bayesian GP-LVM", AISTATS 2010]
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Bayesian GP-LVM objective:
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» fully Bayesian.

[Titsias & Lawrence. “Bayesian GP-LVM", AISTATS 2010]

Access to p(y) also gives us the posterior:

p(y[x)p(x)

p(xly) = o)



Evidence computation is intractable for the GP-LVM

p(y) = / pyx)p(x)dx
— / / Py |)p(E[x)p(x)dfx
— [ otv10)] [ pitiopxiax] at
LT

Intractable!

Intractability: x appears non-linearly in p(f|x), inside K~! (and
also the determinant term), where K = k(x,x).



Solution to intractability: Variational approximation

v

Solution: Construct an approximation of the form of a
variational lower bound (conditioning on M, 8 dropped):

ply) = F.

v

F is the new objective; in maximum — p(y).

v

Since p(y) is approximated, then p(x|y) is also approximate:

q(x) ~ p(x|y)

v

Having a posterior for x is very important!

v

More on these approximations in Alan’s and James' talk
tomorrow.



Advantages and extensions
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» More natural incorporation of priors for X, e.g. dynamics
» Structural extensions:

» Deep models
» Multi-view models
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Automatic Relevance Determination

X is multidimensional: X = {xj}gzl



Automatic Relevance Determination

X is multidimensional: X = {xj}gzl

The EQ cov. function

9 (2 — x’.)2
kpg(z,2') = aexp | — Z ]27l2]
=1
The ARD cov. function
q (35 —r )2
karp(z,2') = aexp —Z ]2l2
7=1 J

1
=aexp [ —3 ij(xj - :L';)Q



Automatic Relevance Determination
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» The lengthscale [; along input dimension j tells us how big
|zj — 2| has to be for | f(x) — f(x)| to be significant.

» So, when [; — oo, i.e. (w; — 0), then f varies very little as a
function of z; (i.e. dimension j becomes irrelevant).

» By optimising the whole vector w = [wy, wa, - - -, w,] we
perform automatic selection of the input features.

» In the GP-LVM case, the input features (columns of X)
correspond to dimensions, hence we perform automatic
dimensionality detection.



Automatic Relevance Determination
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Advantages and extensions

v

Training robust to overfitting (Occam'’s razor)

» More natural handling of missing data (semi-described and
semi-supervised learning)

v

Automatic detection of X's dimensionality

» More natural incorporation of priors for X, e.g. dynamics

v

Structural extensions:

» Deep models
» Multi-view models



Bayes' rule again

p(D]§, M)p(0| M)

p(0|D, M) = p(DIM) = [, p(D]6, M)p(6]M)



Latent space priors

Py |x)p(x
pixly) = 2BILS
GP(0, k(t, 1)) p(y)
» In general, we have p(x|6,)
GP(0, k(z, x)) » If y is a timeseries, then we might want to make

X to be also a timeseries
» We can even make x to be a function: x = z(t)

Then we can put a GP prior on it:

z(t) ~ GP(0,k(t,1))

v



Latent space priors

Video modelling examples...
» https://youtu.be/i9TEoYxaBxQ


https://youtu.be/i9TEoYxaBxQ
https://youtu.be/mUY1XHPnoCU

Dynamics with multiple sequences

» If Y consists of multiple independent sequences,
Y = [Y(l),Y(Q)7 .- -Y(s)], then the time-stamp vector will
also be something like t = [t(V), £, ... ¢t()].

» Then, the covariance matrix from k,(t,t) on the dynamics
will look something like this:

» Mocap demo:


https://youtu.be/fHDWloJtgk8
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Part 3: Bayesian extensions
Deep Gaussian processes
Multi-view modelling



» Deep GPs
» Multi-view: MRD
» Missing Data (uncertainty)



Deep Gaussian processes

» Now recurse the stacked construction

F(x) = GP
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Deep Gaussian processes

» Now recurse the stacked construction

F(x) = GP
f(x(t)) — stacked GP
f(z2(x1)) — stacked GP
x )

flz(z(x---(x1)))) — deep GP

» The variational approximation changes only a
little

O (050000
3 ~ ~

» Uncertainty modelled “everywhere”!



Deep GP: Digits example

Outputs obtained
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Demo: » https://youtu.be/E8-vxt8wxBU
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» Deep GPs
» Multi-view: MRD
» Missing Data (uncertainty)



Multi-view modelling (Expand the model “horizontally”)

» Multi-view data arise from multiple information sources.
These sources naturally contain some overlapping, or shared
signal (since they describe the same “phenomenon”), but also
have some private signal.

» ldea: Model such data via latent variable models

Demo: QT
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Summary

» Bayesian modelling automatically balances fitting with
complexity

» Latent variables are a powerful addition to our GP modelling
toolbox (Neil's talk)

» Similarly to how the mapping f : = +— f(x) is treated in a
Bayesian way in GPs, we can treat x also in a Bayesian way in
GP-LVM

» Many advantages and extensions arise.

» The key to obtaining those is the principled propagation of
uncertainty across all stages of the graphical model.



Thanks!

Questions?
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