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Curve fitting
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I Which curve fits the data better?
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I Which curve fits the data better?

I Which curve is more “complex”?
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I Which curve fits the data better?

I Which curve is more “complex”?

I Which curve is better overall?

Need a good balance between data fit vs overfitting!



How do GPs solve the overfitting problem?



How do GPs solve the overfitting problem?

I Answer: Integrate over the function itself!

I This is associated with the Bayesian methodology.

I So, we will average out all possible function forms, under a
(GP) prior!

Recap:

ML: argmax
w

p(y|w, φ(x)) e.g. y = φ(x)>w + ε

Bayesian: argmax
θ

∫
f p(y|f) p(f |x,θ︸ ︷︷ ︸

GP prior

) e.g. y = f(x,θ) + ε

I θ are hyperparameters

I The Bayesian approach (GP) automatically balances the
data-fitting with the complexity penalty.
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Next: More intuition on...

I What does it mean to follow a Bayesian approach?

I What does it have to do with (avoiding) overfitting and
controlling model complexity?



Bayesian approach

Assume a hypothesis (model) M and a distribution for its
parameters, θ.

I Assume a prior distribution for our parameters, θ.

I Assume a likelihood for the observed data, D, given the
parameters.

I Find the posterior of the parameters, given the data.

I The normaliser of the posterior is the model evidence.

I All linked through Bayes’ rule:

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M) =
∫
θ p(D|θ,M)p(θ|M)

I Next: See how this relates to model complexity.
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➢ Which of the three inferences is
more probable?

➢ Which is simpler?



Bayes’ rule again

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M) =
∫
θ p(D|θ,M)p(θ|M)



(Bayesian) Occam’s Razor

“A plurality is not to be posited without necessity”. W. of Ockham

“Everything should be made as simple as possible, but not simpler”. A. Einstein

Evidence is higher for the model that is not “unnecessarily
complex” but still “explains” the data D.
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Fitting the GP-LVM
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Fitting the GP-LVM
Figure credits: C. H. Ek
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Fitting the GP-LVM
Figure credits: C. H. Ek
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I Additional difficulty: x’s are also missing!

I Improvement: Invoke the Bayesian methodology to find x’s
too.



Bayesian GP-LVM

GP-LVM objective:

I argmax
θ,x

p(y|x,θ), where p(y|x,θ) =
∫
f p(y|f)p(f |x,θ)

I Bayesian w.r.t f , MAP/ML w.r.t x.

Bayesian GP-LVM objective:

I argmax
θ

p(y|θ), where p(y|θ) =
∫
x

[∫
f p(y|f)p(f |x,θ)

]
p(x)

I fully Bayesian.

[Titsias & Lawrence. “Bayesian GP-LVM”, AISTATS 2010]

Access to p(y) also gives us the posterior:

p(x|y) = p(y|x)p(x)
p(y)
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Evidence computation is intractable for the GP-LVM

p(y) =

∫
p(y|x)p(x)dx

=

∫ ∫
p(y|f)p(f |x)p(x)dfx

=

∫
p(y|f)

[ ∫
p(f |x)p(x)dx︸ ︷︷ ︸

Intractable!

]
df

Intractability: x appears non-linearly in p(f |x), inside K−1 (and
also the determinant term), where K = k(x,x).



Solution to intractability: Variational approximation

I Solution: Construct an approximation of the form of a
variational lower bound (conditioning on M,θ dropped):

p(y) ≥ F .

I F is the new objective; in maximum → p(y).

I Since p(y) is approximated, then p(x|y) is also approximate:

q(x) ≈ p(x|y)

I Having a posterior for x is very important!

I More on these approximations in Alan’s and James’ talk
tomorrow.



Advantages and extensions

I Training robust to overfitting (Occam’s razor)

I More natural handling of missing data (semi-described and
semi-supervised learning)

I Automatic detection of X’s dimensionality

I More natural incorporation of priors for X, e.g. dynamics

I Structural extensions:
I Deep models
I Multi-view models
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Automatic Relevance Determination

X is multidimensional: X = {xj}qj=1

The EQ cov. function

kEQ(x, x
′) = α exp

− q∑
j=1

(xj − x′j)2

2l2


The ARD cov. function

kARD(x, x
′) = α exp

− q∑
j=1

(xj − x′j)2

2l2j


= α exp

−1

2

q∑
j=1

wj(xj − x′j)2
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Automatic Relevance Determination

kARD(x, x
′) = αe

−
∑q

j=1

(xj−x′j)
2

2l2
j = αe−

1
2

∑q
j=1 wj(xj−x′j)2

I The lengthscale lj along input dimension j tells us how big
|xj − x′j | has to be for |f(x)− f(x′)| to be significant.

I So, when lj →∞, i.e. (wj → 0), then f varies very little as a
function of xj (i.e. dimension j becomes irrelevant).

I By optimising the whole vector w = [w1, w2, · · · , wq] we
perform automatic selection of the input features.

I In the GP-LVM case, the input features (columns of X)
correspond to dimensions, hence we perform automatic
dimensionality detection.



Automatic Relevance Determination

Bayesian GP-LVM with ARD
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Bayes’ rule again

p(θ|D,M) =
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Latent space priors

p(x|y) = p(y|x)p(x)
p(y)

I In general, we have p(x|θx)
I If y is a timeseries, then we might want to make

x to be also a timeseries

I We can even make x to be a function: x = x(t)

I Then we can put a GP prior on it:
x(t) ∼ GP(0, k(t, t))



Latent space priors

Video modelling examples...
https://youtu.be/i9TEoYxaBxQ

https://youtu.be/mUY1XHPnoCU

https://youtu.be/i9TEoYxaBxQ
https://youtu.be/mUY1XHPnoCU


Dynamics with multiple sequences

I If Y consists of multiple independent sequences,
Y =

[
Y(1),Y(2), · · ·Y(s)

]
, then the time-stamp vector will

also be something like t =
[
t(1), t(2), · · · t(s)

]
.

I Then, the covariance matrix from kx(t, t) on the dynamics
will look something like this:

I Mocap demo: https://youtu.be/fHDWloJtgk8

https://youtu.be/fHDWloJtgk8
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I Deep GPs

I Multi-view: MRD

I Missing Data (uncertainty)



Deep Gaussian processes

I Now recurse the stacked construction

f(x)→ GP

f(x(t))→ stacked GP

f(x2(x1))→ stacked GP

f(x(x(x · · · (x1))))→ deep GP

I The variational approximation changes only a
little

I Uncertainty modelled “everywhere”!
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Deep GP: Digits example

Demo: https://youtu.be/E8-vxt8wxBU

https://youtu.be/E8-vxt8wxBU


I Deep GPs

I Multi-view: MRD

I Missing Data (uncertainty)



Multi-view modelling (Expand the model “horizontally”)

I Multi-view data arise from multiple information sources.
These sources naturally contain some overlapping, or shared
signal (since they describe the same “phenomenon”), but also
have some private signal.

I Idea: Model such data via latent variable models

Demo: https://youtu.be/rIPX3CIOhKY

https://youtu.be/rIPX3CIOhKY
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Summary

I Bayesian modelling automatically balances fitting with
complexity

I Latent variables are a powerful addition to our GP modelling
toolbox (Neil’s talk)

I Similarly to how the mapping f : x 7→ f(x) is treated in a
Bayesian way in GPs, we can treat x also in a Bayesian way in
GP-LVM

I Many advantages and extensions arise.

I The key to obtaining those is the principled propagation of
uncertainty across all stages of the graphical model.



Thanks!

Questions?
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