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Probabilistic Models

“Probabilistic modelling involves the determination of a statistical
model, a method for fitting that model to observed data, and a
method for using the fitted model to solve the task at hand.”

D. Blei, D. Mimno
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Treating Data as Random Variables
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Gaussian distribution

Probability model: p(f1, f2) ~ N (0,K)
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Gaussian distribution

Probability model: p(f1, f2) ~ N (0,K)
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Gaussian distribution

Probability model: p(fi, f2) ~ N (0, K)
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Gaussian distribution

Probability model: p(fi, f2) ~ N (0, K)
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Model fitting

Which distribution (Hypothesis, 7{) best explains/fits the data?
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Model fitting

Which distribution (Hypothesis, 7{) best explains/fits the data?
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Model fitting

Which distribution (Hypothesis, 7{) best explains/fits the data?
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Model fitting can be done with maximum likelihood.
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Bayes' rule

Taking things one step further: assume a model (hypothesis) H
and a distribution for its parameters, 6.

» Assume a prior distribution for our parameters, 6.

» Assume a likelihood for the observed data, y, given the
parameters.

» Find the of the parameters, given the data.
» The normaliser of the posterior is the model evidence.

> All linked through Bayes’ rule:

_ _ p(yl0, 1)p(0|H)
p(yH) = [yp(ylo, H)




Occam’s razor

“Everything should be made as simple as possible, but not
simpler”. A. Einstein
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Fig. 1. This figure is reproduced with permission from MacKay
(1991). Tt has also appeared in MacKay (1992) and MacKay (2003,
chapter 28). The Y-axis indexes all possible data sets (under some
idealized ordering). Each curve gives a probability distribution over
data sets, so must enclose an area of 1. H 1 is a simple model focusing
on data in region C;. Given data is this region, H1 has more evidence
than a more powerful model H2, which would be favored given more
complex data (outside G;). [Murray and Ghahramani, 2001]




Latent Variables

» What are the /atent features of “cuteness’?




Another example: latent process

Is Beckham an expert in Newtonian & trajectory mechanics?




Another example: latent process

Is Beckham an expert in Newtonian & trajectory mechanics?
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Part 2: Gaussian processes
GPs as infinite dimensional Gaussian distributions
Unsupervised GPs: GP-LVM



Introducing Gaussian Processes:

» A Gaussian distribution depends on a mean and a covariance
matrix.

» A Gaussian  process depends on a mean and a covariance
function.
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Sampling from a 2-D Gaussian
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Sampling from a GP
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Sampling from a GP










Infinite model... but we always work with finite sets!

Let's start with a multivariate Gaussian:
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Infinite model... but we always work with finite sets!

Let's start with a multivariate Gaussian:
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with:

Marginalisation property:
p(fa,fp) ~ N(p,K).  Then:

p(fa) = / p(fa,f5)dfp = N (14, Kana)

fp



Infinite model... but we always work with finite sets!

In the GP context:

{“"] i =[S ]



Posterior is also Gaussian!
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Posterior is also Gaussian!

p(fa,fp) ~ N(pn,K).  Then:
p(falfp) = N(---,--+)

In the GP context this can be used for inter/extrapolation:

p(felfi- In) = p(f (@)l f (1), -+ fan)) ~ N

But where is K coming from in GPs?



Covariance samples and hyperparameters

> k(z,2') = aexp (—3(z —2) T (z — 1))

» The hyperparameters of the cov. function define the
properties (and NOT an explicit form) of the sampled
functions




Incorporating Gaussian noise is tractable

» So far we assumed: f = f(X)

» Assuming that we only observe noisy versions y of the true
outputs f:
y:f(X) + € €NN(0702)



Fitting the data (shaded area is uncertainty)




Fitting the data - Prior Samples
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Fitting the data




Fitting the data




Fitting the data - more noise




Fitting the data - no noise




Fitting the data - Posterior samples




Fitting the data
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Fitting the data




Application to Disease modelling

Ricardo Andrade Pacheco.

http://ric70x7.github.io/research.html
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http://ric70x7.github.io/research.html

Unsupervised learning: GP-LVM

» If X is unobserved, treat it as a
parameter and optimize over it.



Manifold Relevance Determination

.—-s /.\’_)@;9@
¥ @

» Observations come into two different views: Y and Z.

» The latent space is segmented into parts private to Y, private
to Z and shared between Y and Z.

» Used for data consolidation and discovering commonalities.






Consolidating complementary experimental data

ethanol glucose

\

Gene Gene
SNPs - ) )
(genotype) Expression  Expression

(phenotype) (phenotype)

Shared information: biological signal /
confounders

Private information: environmental
confounders

Confounders: Statistical relationships that do not reflect the true
causality in the data



Discovering commonalities in heterogeneous data

L A L

Private information: Shared information:
Confounders (?) Associations (?)



Application to Health Modelling

Research agenda of Prof. Neil Lawrence’s group:

» http://sheffieldml.github.io/

time  (epi)genomics environment

O fully observed

gene " survival
expresssion analysis O unobserved (latent)
social = O partially observed
network clinical
data measurements | ... observed but uncertain

& treatments = ; i
“.* (approximate observation)



http://sheffieldml.github.io/

Example: faces

» https://youtu.be/rIPX3CIOhKY


https://youtu.be/rIPX3CIOhKY

Example: robotics



Summary



Thanks

Thanks to Neil Lawrence, James Hensman, Michalis Titsias, Carl
Henrik Ek.
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MRD weights




Dimensionality reduction: Linear vs non-linear

e
y=f(x)
0
0
e
y=r(x))

Image from: "Dimensionality Reduction the Probabilistic Way”, N. Lawrence, ICML tutorial 2008

fis linear

fis non-linear
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