
Probability and Uncertainty in Deep Learning

Andreas Damianou
andreasdamianou.com

Amazon Research, Cambridge

Computer Science Colloquium, Warwick
6 June 2019

Notebook

http://adamian.github.io/talks/Damianou_DL_tutorial_18.ipynb

http://adamian.github.io/talks/Damianou_DL_tutorial_18.ipynb

Outline

I Deep neural networks

I Uncertainty: Bayesian deep neural networks

I Focus: Bayesian generative models

I Deep Gaussian processes

What is Machine Learning?

data + model
compute−−−−−→ prediction

To combine model with data we need:

I A prediction function f(·) includes our beliefs about the regularities of the
universe.

I An loss function L(·) defines the cost of misprediction.

N. Lawrence’s tutorial: inverseprobability.com/talks/notes/probabilistic-machine-learning.html

Regression example

Predict outputs y from inputs x: f(x) : x 7→ y.

f(x) = φ(xw + b)

L(f(x),y) = (f(x)− y)2

Regression example

Predict outputs y from inputs x: f(x) : x 7→ y.

f(x) = φ(x w + b)

f(x) = φ(φ(xw
′
+ b

′
)w + b)

L(f(x),y) = (f(x)− y)2

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector wl. E.g. for 2 layers:

fnet = h2(h1(x;w1);w2).

Generally fnet : x 7→ y with:

h1 = ϕ(xw1 + b1)

h2 = ϕ(h1w2 + b2)

· · ·
ŷ = ϕ(hL−1wL + bL)

φ is the (non-linear) activation function.

Deep neural networks: hierarchical function definitions

A neural network is a composition of functions (layers), each parameterized with a
weight vector wl. E.g. for 2 layers:

fnet = h2(h1(x;w1);w2).

Generally fnet : x 7→ y with:

h1 = ϕ(xw1 + b1)

h2 = ϕ(h1w2 + b2)

· · ·
ŷ = ϕ(hL−1wL + bL)

φ is the (non-linear) activation function.

Graphical depiction

Optimization

One layer:

Loss =
1

2
(h− y)2

h = φ(xw)

ϑLoss

ϑw
= (y − h)︸ ︷︷ ︸

ε

ϑφ(xw)

ϑw

Two layers:

Loss =
1

2
(h2 − y)2

h2 = φ

φ(xw0)︸ ︷︷ ︸
h1

w1

ϑLoss

ϑw0
= · · ·

ϑLoss

ϑw1
= · · ·

Derivative w.r.t w1

ϑ(h2 − y)2

ϑw1
= −21

2
(h2 − y)

ϑh2

ϑw1
=

= (y − h2)
ϑφ(h1w1)

ϑw1
=

= (y − h2)
ϑφ(h1w1)

ϑh1w1

ϑh1w1

ϑw1
=

= (y − h2)︸ ︷︷ ︸
ε2

ϑφ(h1w1)

ϑh1w1︸ ︷︷ ︸
g1

hT1

h1 is computed during the forward pass.

Derivative w.r.t w0

ϑ(h2 − y)2

ϑw0
= −21

2
(h2 − y)

ϑh2

ϑw0
=

= (y − h2)
ϑφ(h1w1)

ϑh1w1

ϑh1w1

ϑh1

ϑh1

ϑw0
=

= ε2 g1 w
T
1

ϑφ(xw0)

xw0

ϑxw0

ϑw0
=

= ε2 g1 w
T
1

ϑφ(xw0)

ϑxw0︸ ︷︷ ︸
g0

xT

DNN optimization observations

I Propagation of error is just the chain rule (calculus).

I Factors accumulate, can lead to problems.

I Difficult to do all this by hand.

Go to notebook!

Automatic differentiation

Example: f(x1, x2) = x1
√

log x1
sin(x22)

has symbolic graph:

(image: sanyamkapoor.com)

Lottery ticket hypothesis

There’s no automatic regularization (hence tricks like early stopping, dropout etc).

I Optimization landscape: multiple optima and difficult to navigate

I Over-parameterized networks contain multiple sub-networks (“lottery tickets”)

I “Winning ticket”: a lucky sub-network found a good solution

I Over-parameterization: more tickets, higher winning probability

I Of course this means we have to prune or at least regularize.

(Frankle and Carbin (2018))

(Bayesian) Occam’s Razor

“A plurality is not to be posited without necessity” (W. of Ockham).

“Everything should be made as simple as possible, but not simpler” (A. Einstein).

I How to represent complexity if we only deal with one of many possible sets of
parameters?

I Is a 10−layer network with all weights = 0 more complex than an shallow one?

I Bayesian deep learning marginalizes out the parameters.

(Bayesian) Occam’s Razor

“A plurality is not to be posited without necessity” (W. of Ockham).

“Everything should be made as simple as possible, but not simpler” (A. Einstein).

I How to represent complexity if we only deal with one of many possible sets of
parameters?

I Is a 10−layer network with all weights = 0 more complex than an shallow one?

I Bayesian deep learning marginalizes out the parameters.

(Bayesian) Occam’s Razor

D := (x,y)

m = {#layers, activation type, ...}

pm(data)

pm(data)

pm(data)

Higher pm(data = D) when m explains D well without being unnecessarily complex.

Integrating out weights

I Define: D := (x,y)

I Remember Bayes’ rule:

p(w|D) =
p(D|w)p(w)

p(D) =
∫
p(D|w)p(w)dw

I From calculus (gradients for w∗) to Bayesian inference (posterior p(w|D)).

Integrating out weights

I Define: D := (x,y)

I Remember Bayes’ rule:

p(w|D) =
p(D|w)p(w)

p(D) =
∫
p(D|w)p(w)dw

I From calculus (gradients for w∗) to Bayesian inference (posterior p(w|D)).

Probabilistic re-formulation

I Training minimizing loss:

argmin
w

1

2

N∑
i=1

(fnet(w, xi)− yi)2︸ ︷︷ ︸
fit

+λ
∑
i

‖ wi ‖︸ ︷︷ ︸
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax
w

log p(y|x,w)︸ ︷︷ ︸
fit

+ log p(w)︸ ︷︷ ︸
regularizer

where p(y|x,w) ∼ N and p(w) ∼ Laplace

I For full Bayesian inference we also need
∫
p(y|x,w)p(w)dw

Probabilistic re-formulation

I Training minimizing loss:

argmin
w

1

2

N∑
i=1

(fnet(w, xi)− yi)2︸ ︷︷ ︸
fit

+λ
∑
i

‖ wi ‖︸ ︷︷ ︸
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax
w

log p(y|x,w)︸ ︷︷ ︸
fit

+ log p(w)︸ ︷︷ ︸
regularizer

where p(y|x,w) ∼ N and p(w) ∼ Laplace

I For full Bayesian inference we also need
∫
p(y|x,w)p(w)dw

Probabilistic re-formulation

I Training minimizing loss:

argmin
w

1

2

N∑
i=1

(fnet(w, xi)− yi)2︸ ︷︷ ︸
fit

+λ
∑
i

‖ wi ‖︸ ︷︷ ︸
regularizer

I Equivalent probabilistic view for regression, maximizing posterior probability:

argmax
w

log p(y|x,w)︸ ︷︷ ︸
fit

+ log p(w)︸ ︷︷ ︸
regularizer

where p(y|x,w) ∼ N and p(w) ∼ Laplace

I For full Bayesian inference we also need
∫
p(y|x,w)p(w)dw

A standard neural network

Y

x1

ϕ1

w
1

x2

ϕ2

w
2

x3

ϕ3

w
3

xq

ϕq

w q
. . .

. . .

Once we’ve defined all w’s with back-prop, then f (and the whole network) becomes
deterministic.

BNN with priors on its weights

Y

x1

ϕ1

w
1

x2

ϕ2

w
2

x3

ϕ3

w
3

xq

ϕq
w
q

. . .

. . .

⇒

Y

x1

ϕ1

q(w
1)

x2

ϕ2

q(w
2)

x3

ϕ3

q(w
3)

xq

ϕq

q(
w
q
)

. . .

. . .

BNN with priors on its weights

Y

x1

ϕ1

x2

ϕ2

x3

ϕ3

xq

ϕq

0.23

0.90

0.12 0.
54

. . .

. . .

⇒

Y

x1

ϕ1

x2

ϕ2

x3

ϕ3

xq

ϕq. . .

. . .

Alternative view: hierarchy of random variables

Y

H
G

ϕ ϕ ϕ. . .

...

H
G

X

ϕ ϕ ϕ. . .
Inference:

I Consider intermediate random
variables H

I Called latent variables

I All uncertainty summarized in
Hl and propagated across layers

Alternative view: hierarchy of random variables

Y

H
G

ϕ ϕ ϕ. . .

...

H
G

X

ϕ ϕ ϕ. . .
Inference:

I Consider intermediate random
variables H

I Called latent variables

I All uncertainty summarized in
Hl and propagated across layers

Re-cap so far

I Bayesian deep neural network marginalize out weights and find p(w|D).

I Latent variable view considers a stack of random variables with parametric (neural
network-style) mappings.

BNN properties

I Generalization: A BNN understands (and avoids) complexity (and therefore
overfitting).

I Uncertainty: A BNN “knows” what it doesn’t know by propagating uncertainty.

I Data generation: A model which generalizes well, should also understand -or even
be able to create “imagine”)- variations.

Need for uncertainty

I Reinforcement learning

I Critical predictive systems

I Active learning

I Semi-automatic systems

I Scarce data scenarios

I ...

Generative models: learn by synthesis

Observations: D Interpretation: H

Inference: p(H|D) = p(D|H)p(H)
p(D)

Credit for slide: Iasonas Kokkinos, George Papandreou

Generation

I Learn latent space from actor

I Generate by condition on new observation

Show video..

int8.io/variational-autoencoder-in-tensorflow/

What’s the catch?

I Remember Bayes rule:

p(w|D) =
p(D|w)p(w)

p(D) =
∫
p(D|w)p(w)dw

I
∫
p(D|w)p(w)dw is typically very difficult to compute. Hence we resort to

(expensive) approximations.

What’s the catch?

I Remember Bayes rule:

p(w|D) =
p(D|w)p(w)

p(D) =
∫
p(D|w)p(w)dw

I
∫
p(D|w)p(w)dw is typically very difficult to compute. Hence we resort to

(expensive) approximations.

Black-box VI (github.com/blei-lab/edward)

Re-cap so far

I Bayesian deep neural network marginalize out weights and find p(w|D).

I Latent variable view considers a stack of random variables with parametric (neural
network-style) mappings.

I Generative models possible in the Bayesian setting.

I Bayesian inference is challenging, but tools are being developed.

From NN to GP

Y

H
G

ϕ ϕ ϕ.

...

H
G

X

ϕ ϕ ϕ.
I NN: H2 = W2φ(H1)

I GP: φ is ∞−dimensional so:
H2 = f2(H1; θ2) + ε

I NN: p(W)

I GP: p(f(·))

From NN to GP

Y

H
G

ϕ ϕ ϕ.

...

H
G

X

ϕ ϕ ϕ.
I NN: H2 = W2φ(H1)

I GP: φ is ∞−dimensional so:
H2 = f2(H1; θ2) + ε

I NN: p(W)

I GP: p(f(·))

A simpler representation

Y

H1

H2

X

I p(Y|X) =∫
H1,H2

p(Y|H1)p(H1|H2)p(H2|X)

I There are no weights; just functions, data
and hyper-parameters.

A. Damianou, PhD thesis, 2015

Re-cap so far

I Bayesian deep neural network marginalize out weights and find p(w|D).

I Latent variable view considers a stack of random variables with parametric (neural
network-style) mappings.

I Generative models possible in the Bayesian setting.

I Bayesian inference is challenging, but tools are being developed.

I Deep GPs consider a stack of random variables with functional non-parametric
mappings.

An example where uncertainty propagation matters: Recurrent learning.

Dynamics/memory: Deep Recurrent Gaussian Process

Avatar control

Figure: The generated motion with a step function signal, starting with walking (blue),
switching to running (red) and switching back to walking (blue).

Videos:
https://youtu.be/FR-oeGxV6yY Switching between learned speeds

https://youtu.be/AT0HMtoPgjc Interpolating (un)seen speed

https://youtu.be/FuF-uZ83VMw Constant unseen speed

https://youtu.be/FR-oeGxV6yY
https://youtu.be/AT0HMtoPgjc
https://youtu.be/FuF-uZ83VMw

RGP GPNARX

MLP-NARX LSTM

RGP GPNARX

MLP-NARX LSTM

Summary

I DNNs are powerful but estimating their many parameters causes problems

I Bayesian NNs marginalize out the parameters

I Deep GPs work directly in the function space

I Calculus for gradients vs Bayes rule for posteriors

I No method is universally the best. Multiple considerations - ask me :-)

