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Real-world datasets in computer vision are usually
high-dimensional, complex and noisy




Dimensionality reduction
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Probabilistic vs non-probabilistic

A probabilistic interpretation allows us to:
e Have a model of the data
e Handle incomplete data
e Generate/sample novel data

e Extend the model with prior information or integrate it with
other models (e.g. mixtures)



Probabilistic, generative methods

e Observed (high-dimensional) data: Y € RV*P
These contain redundant information

e Actual (low-dimensional) data: X ¢ RV*Q Q <« D
These are unobserved and (ideally) contain only the minimum
amount of information needed to correctly describe the
phenomenon

e Work “backwards”: learn f: X — Y



Probabilistic, generative methods

Observed (high-dimensional) data: Y € RVxP
These contain redundant information

Actual (low-dimensional) data: X € RV*Q Q < D
These are unobserved and (ideally) contain only the minimum
amount of information needed to correctly describe the
phenomenon

Work “backwards”: learn f: X — Y

Model:

Ynd = fd(xn7W) +€n, €~ N(Ovﬂil)
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fis linear

fis non-linear




Gaussian process latent variable model
(GP-LVM)

° places a prior on and marginalises the latent space X
and optimises the linear mapping's parameters W

° does the opposite: the prior is placed on the
mapping.

w X




Gaussian process latent variable model
(GP-LVM)

° places a prior on and marginalises the latent space X
and optimises the linear mapping's parameters W

° does the opposite: the prior is placed on the
mapping.

w X

o A f ~GP(0,k(x,z")) allows for non-linear mappings
if the kernel k& is non-linear. For example:

1 Q 2
k (xi,x;) = o%e” 2 2q=1Wa(@ia =)
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Optimising the GP-LVM

e Objective function for optimisation is p(Y|X)
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Optimising the GP-LVM

e Objective function for optimisation is p(Y|X)

e Problem: this finds a single point (MAP)
estimate for X

e We would prefer to instead find a distribution
over X = Bayesian GP-LVM

e This allows for:
» training robust to overfitting
» automatic detection for the dimensionality of X
» forcing known structure on the latent space




Bayesian GPLVM

e Marginal likelihood in GPLVM:

p(Y|X) = / p(Y£) p(£|X)df = N(Y]0, Ky + 5~ )

The GPLVM is trained by maximizing p(Y'|X) w.r.t the
mapping's parameters and X (jointly) = MAP estimate,

e Bayesian GPLVM: Also integrate out X's:

p(Y) = / p(¥Y|X) p(X)dX

N
p(X) =[] N(xxl0,Ig)

n=1



Bayesian GPLVM

e Marginal likelihood in GPLVM:

p(Y|X) = / p(Y£) p(£|X)df = N(Y]0, Ky + 5~ )

The GPLVM is trained by maximizing p(Y|X) w.r.t the
mapping's parameters and X (jointly) = MAP estimate,

e Bayesian GPLVM: Also integrate out X's:

p(Y) = / p(¥Y|X) p(X)dX

N
p(X) =[] N(xxl0,Ig)

n=1

e Problem: The marginal likelihood as well as the posterior
p(X|Y') are intractable = the variational framework of
[Titsias and Lawrence, 2010] resolves this



Automatic dimensionality detection

e Achieved by employing automatic relevance determination
(ARD) priors for the mapping f.

o f~GP(0,ks) with:
kr (xi,%xj) = o2 o1 wa(ig—i.0)”

e Example:




Modelling dynamics

e [fY formis a , then X also has
to be one

[Damianou et al., 2011]
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Modelling dynamics

If Y form is a , then X also has
to be one
Place a on the latent space:

x = xz(t) = GP(0, kz)

Dynamics are encoded in the covariance matrix
K, = k;(t,t), e.g. forcing K, to be block-diagonal
allows to jointly model individual sequences

Video examples...

[Damianou et al., 2011]



Multi-modal modelling

Several observation modalities for the same underlying
phenomenon

. factorise the latent space into parts that are either
private or shared for all modalities

. use a separate set of ARD parameters for
each modality

The ARD weights are optimised to learn the responsibility of
each latent dimension for generating each of the observation
spaces




DENE

e Latent space X initialised with 14 dimensions
e Optimisation factorises X as:

» Shared subspace: ¢ = {1, 2,3}

» Private subspace a: ¢ = {5,7,11, 14}

» Private subspace b: ¢ = {4,8,10,12,13}

12 3 4 5 6 7

8 9 10 11 12 13 1



Summary

GP-LVVM: probabilistic non-linear dimensionality reduction

Bayesian GP-LVVM: placing a prior over and marginalising the
latent space

Dynamical framework: constraining the latent space to be a
timeseries

Multi-modal framework: automatically segment the latent
space to shared and private subspaces
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