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Real-world datasets in computer vision are usually
high-dimensional, complex and noisy



Dimensionality reduction
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Probabilistic vs non-probabilistic

A probabilistic interpretation allows us to:

• Have a model of the data

• Handle incomplete data

• Generate/sample novel data

• Extend the model with prior information or integrate it with
other models (e.g. mixtures)



Probabilistic, generative methods

• Observed (high-dimensional) data: Y ∈ RN×D

These contain redundant information

• Actual (low-dimensional) data: X ∈ RN×Q, Q� D
These are unobserved and (ideally) contain only the minimum
amount of information needed to correctly describe the
phenomenon

• Work “backwards”: learn f : X 7→ Y

• Model:

ynd = fd(xn,W ) + εn , εn ∼ N (0, β−1)
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Linear vs non-linear



Gaussian process latent variable model
(GP-LVM)

• PPCA places a prior on and marginalises the latent space X
and optimises the linear mapping’s parameters W

• GP-LVM does the opposite: the prior is placed on the
mapping.

• A GP prior f ∼ GP(0, k(x, x′)) allows for non-linear mappings
if the kernel k is non-linear. For example:

kf (xi,xj) = σ2e−
1
2

∑Q
q=1 wq(xi,q−xj ,q )2
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Optimising the GP-LVM

• Objective function for optimisation is p(Y |X)

• Problem: this finds a single point (MAP)
estimate for X

• We would prefer to instead find a distribution
over X ⇒ Bayesian GP-LVM

• This allows for:
I training robust to overfitting
I automatic detection for the dimensionality of X
I forcing known structure on the latent space
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Bayesian GPLVM
• Marginal likelihood in GPLVM:

p(Y |X) =

∫
p (Y |f) p(f |X)df = N (Y |0,KNN + β−1IN )

The GPLVM is trained by maximizing p(Y |X) w.r.t the
mapping’s parameters and X (jointly) ⇒ MAP estimate,

• Bayesian GPLVM: Also integrate out X’s:

p(Y ) =

∫
p (Y |X) p(X)dX

p(X) =

N∏
n=1

N(xn|0, IQ)

• Problem: The marginal likelihood as well as the posterior
p(X|Y ) are intractable ⇒ the variational framework of
[Titsias and Lawrence, 2010] resolves this
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Automatic dimensionality detection
• Achieved by employing automatic relevance determination

(ARD) priors for the mapping f .

• f ∼ GP(0, kf ) with:

kf (xi,xj) = σ2e−
1
2

∑Q
q=1 wq(xi,q−xj ,q )2

• Example:



Modelling dynamics

• If Y form is a multivariate time-series, then X also has
to be one

• Place a temporal GP prior on the latent space:
x = x(t) = GP(0, kx)

• Dynamics are encoded in the covariance matrix
Kx = kx(t, t), e.g. forcing Kx to be block-diagonal
allows to jointly model individual sequences

• Video examples...

[Damianou et al., 2011]
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Multi-modal modelling
• Several observation modalities for the same underlying

phenomenon

• Challenge: factorise the latent space into parts that are either
private or shared for all modalities

• Bayesian solution: use a separate set of ARD parameters for
each modality

• The ARD weights are optimised to learn the responsibility of
each latent dimension for generating each of the observation
spaces



Example

• Latent space X initialised with 14 dimensions

• Optimisation factorises X as:
I Shared subspace: q = {1, 2, 3}
I Private subspace a: q = {5, 7, 11, 14}
I Private subspace b: q = {4, 8, 10, 12, 13}

• Video...



Summary

• GP-LVM: probabilistic non-linear dimensionality reduction

• Bayesian GP-LVM: placing a prior over and marginalising the
latent space

• Dynamical framework: constraining the latent space to be a
timeseries

• Multi-modal framework: automatically segment the latent
space to shared and private subspaces



Tack!
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