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Real-world image datasets in computer vision are usually
high-dimensional, complex and noisy



Probabilistic methods for dim. reduction

• Observed (high-dimensional) data: Y ∈ RN×D

• Actual (low-dimensional) data: X ∈ RN×Q, Q� D

• Model:
ynd = fd(xn) + εn , εn ∼ N (0, β−1)
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Gaussian process latent variable model
GP-LVM: Places a GP prior f ∼ GP(0, kf (x, x′)) directly on the
mapping function so that:

p(F |X) ∼ N (0, kf (X,X))

from which we can compute the likelihood

p(Y |X) =

∫
p (Y |F ) p(F |X)dF = N (Y |0, kf (X,X) + β−1IN )

This allows for non-linear mappings if the covariance function kf is
non-linear. For example:

kf (xi,xj) = σ2 exp

−1

2

Q∑
q=1

wq (xi ,q − xj ,q)
2


[Lawrence 2005]
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Optimising the GP-LVM

• Objective function for optimisation is p(Y |X)

• Problem: this finds a single point (MAP)
estimate for X

• We would prefer to instead find a distribution
over X ⇒ Bayesian GP-LVM

• This allows for:
I training robust to overfitting
I automatic detection for the dimensionality of X
I incorporating known structure on the latent

space
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Bayesian GP-LVM
• GP-LVM objective:

p(Y |X) =

∫
p (Y |f) p(f |X)df = N (Y |0, kf (X,X) + β−1IN )

The GP-LVM is trained by maximizing p(Y |X) w.r.t the
mapping’s parameters and X (jointly) ⇒ MAP estimate

• Bayesian GP-LVM: Also integrate out X’s:

p(Y ) =

∫
p (Y |X) p(X|θx)dX

• Tractability: The marginal likelihood as well as the posterior
p(X|Y ) are intractable ⇒ variational framework in an
expanded probability model [Titsias and Lawrence, 2010] and find
a bound:

Fv ≤ log p(Y )
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Incorporating prior assumptions

• Unconstrained X: p(X) ∼ N (0, IQ)

• Model dynamics: x = x(t) ∼ GP(0, kx)

• x’s coupled in p(X)⇒ O(N2) var. parameters in the
approximate posterior q(X) ∼ N (µ, S)

I Reparametrization using fixed point equations
⇒ O(N) actual parameters: S = (K−1

x + diag(λ))−1
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Automatic dimensionality detection
• Achieved by employing automatic relevance determination

(ARD) priors for the mapping f .

• f ∼ GP(0, kf ) with:

kf (xi,xj) = σ2 exp

−1

2

Q∑
q=1

wq (xi ,q − xj ,q)
2


• Example:



More on dynamics

• Dynamics are encoded in the covariance matrix Kx = kx(t, t),
e.g. forcing Kx to be block-diagonal allows to jointly model
individual sequences

• Video examples...
http://www.youtube.com/watch?v=i9TEoYxaBxQ

http://www.youtube.com/watch?v=mUY1XHPnoCU
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Multi-modal modelling
• Several observation modalities for the same underlying

phenomenon

• Challenge: factorise the latent space into parts that are either
private or shared for all modalities

• Bayesian solution: use a separate set of ARD parameters for
each modality

• The ARD weights are optimised to learn the responsibility of
each latent dimension for generating each of the observation
spaces



Multi-modal modelling
• Several observation modalities for the same underlying

phenomenon

• Challenge: factorise the latent space into parts that are either
private or shared for all modalities

• Bayesian solution: use a separate set of ARD parameters for
each modality

• The ARD weights are optimised to learn the responsibility of
each latent dimension for generating each of the observation
spaces ⇒ soft segmentation



Example: Yale faces

• Dataset Y : 3 persons under all illumination conditions

• Dataset Z: As above for 3 different persons

• Align datapoints yn and zn only based on the lighting
direction

• Show MATLAB demo / video results...


YaleDataset.avi
Media File (video/avi)



Results

Dims 1 vs 2 Dims 1 vs 3 Dims 5 vs 14

ARD weights for Y ARD weights for Z



Applications

• Exploring the structure of the latent space

• Generation of novel observations

• Supervised dimensionality reduction

• Transfer information between modalities

• Extension to hierarchical scenarios (deep architectures)
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Summary

• GP-LVM: probabilistic non-linear dimensionality reduction

• Bayesian GP-LVM: placing a prior over and marginalising the
latent space

• Dynamical framework: constraining the latent space to be a
timeseries

• Multi-modal framework: automatically segment the latent
space to shared and private subspaces
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