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Real-world datasets in computer vision are usually
high-dimensional, complex and noisy



Dimensionality reduction
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Probabilistic vs non-probabilistic

A probabilistic interpretation allows us to:

• Have a model of the data

• Handle incomplete data

• Generate/sample novel data

• Extend the model with prior information or integrate it with
other models (e.g. mixtures)



Probabilistic, generative methods

• Observed (high-dimensional) data: Y ∈ RN×D

These contain redundant information

• Actual (low-dimensional) data: X ∈ RN×Q, Q� D
These are unobserved and (ideally) contain only the minimum
amount of information needed to correctly describe the
phenomenon

• Work “backwards”: learn f : X 7→ Y



Probabilistic, generative methods

• Model:

ynd = fd(xn,W ) + εn , εn ∼ N (0, β−1)

• p(Y |W,X, β) =
∏N

n=1N (yn|Wxn, β
−1I) (linear case)

• W,X ∈ RN×Q, Q� D

• X is unobserved (latent space)



From dual PPCA to GP-LVM

• PPCA places a prior on and marginalises the latent space X
and optimises the linear mapping’s parameters W

• Dual PPCA does the opposite: the prior is placed on the
mapping parameters.

p(Y |W,β) =∫
p(Y |X,W, β)p(X)dX

p(Y |X,β) =∫
p(Y |X,W, β)p(W )dW



Gaussian process latent variable model
(GP-LVM)

• PPCA and Dual PPCA are equivalent (equivalent eigenvalue
problems for ML solution)

• GP-LVM: Instead of placing a prior p(W ) on the parametric
mapping’s parameters, we can place a prior directly on the
mapping function ⇒ GP prior

• A GP prior f ∼ GP(0, k(x, x′)) allows for non-linear mappings
if the kernel k is non-linear. For example:

kf (xi,xj) = σ2 exp

−1

2

Q∑
q=1

wq (xi ,q − xj ,q)
2


[Lawrence 2005]
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Dimensionality reduction: Linear vs
non-linear

Image from: ”Dimensionality Reduction the Probabilistic Way”, N. Lawrence, ICML tutorial 2008



Optimising the GP-LVM

• Objective function for optimisation is p(Y |X)
(found analytically, as F is finite)

• Problem: this finds a single point (MAP)
estimate for X

• We would prefer to instead find a distribution
over X ⇒ Bayesian GP-LVM

• This allows for:
I training robust to overfitting
I automatic detection for the dimensionality of X
I incorporating known structure on the latent

space
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Bayesian GPLVM
• GPLVM objective function:

p(Y |X) =

∫
p (Y |f) p(f |X)df = N (Y |0,KNN + β−1IN )

The GPLVM is trained by maximizing p(Y |X) w.r.t the
mapping’s parameters and X (jointly) ⇒ MAP estimate,

• Bayesian GPLVM: Also integrate out X’s:

p(Y ) =

∫
p (Y |X) p(X)dX

p(X) =

N∏
n=1

N(xn|0, IQ)

• Tractability: The marginal likelihood as well as the posterior
p(X|Y ) are intractable ⇒ the variational framework of [Titsias
and Lawrence, 2010] resolves this
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Automatic dimensionality detection
• Achieved by employing automatic relevance determination

(ARD) priors for the mapping f .

• f ∼ GP(0, kf ) with:

kf (xi,xj) = σ2e−
1
2

∑Q
q=1 wq(xi,q−xj ,q )2

• Example:



Modelling dynamics

• If Y form is a multivariate time-series, then X also has
to be one

• Place a temporal GP prior on the latent space:
x = x(t) = GP(0, kx)

• Dynamics are encoded in the covariance matrix
Kx = kx(t, t), e.g. forcing Kx to be block-diagonal
allows to jointly model individual sequences

• Video examples...

[Damianou et al., 2011]
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Modelling sequences

• Dynamics are encoded in the covariance matrix Kx = kx(t, t),
e.g. forcing Kx to be block-diagonal allows to jointly model
individual sequences



Multi-modal modelling
• Several observation modalities for the same underlying

phenomenon

• Challenge: factorise the latent space into parts that are either
private or shared for all modalities

• Bayesian solution: use a separate set of ARD parameters for
each modality

• The ARD weights are optimised to learn the responsibility of
each latent dimension for generating each of the observation
spaces



Manifold Relevance Determination

• The high-level description of the model:

• Bayesian optimisation ensures that irrelevant dimensions will
be assigned a zero weight

[Damianou et al., 2012]



Example: Yale faces

• Dataset Y : 3 persons under all illumination conditions

• Dataset Z: As above for 3 different persons

• Align datapoints yn and zn only based on the lighting
direction


YaleDataset.avi
Media File (video/avi)



Results
• Latent space X initialised with 14 dimensions

• Weights define a segmentation of X

• Video...



Summary

• GP-LVM: probabilistic non-linear dimensionality reduction

• Bayesian GP-LVM: placing a prior over and marginalising the
latent space

• Dynamical framework: constraining the latent space to be a
timeseries

• Multi-modal framework: automatically segment the latent
space to shared and private subspaces
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