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Real-world datasets in computer vision are usually
high-dimensional, complex and noisy




Dimensionality reduction
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Probabilistic vs non-probabilistic

A probabilistic interpretation allows us to:
e Have a model of the data
e Handle incomplete data
e Generate/sample novel data

e Extend the model with prior information or integrate it with
other models (e.g. mixtures)



Probabilistic, generative methods

e Observed (high-dimensional) data: Y € RV*P
These contain redundant information

e Actual (low-dimensional) data: X ¢ RVXQ Q < D
These are unobserved and (ideally) contain only the minimum
amount of information needed to correctly describe the
phenomenon

o Work “backwards”: learn f: X — Y



Probabilistic, generative methods

e Model:

Ynd = fa(Xn, W) +€n, e ~N(0,587")
o p(Y|W,. X, ) = ngl N(ynu|Wx,, B7) (linear case)
e W, X e RNXQ Q< D

e X is unobserved (latent space)



From dual PPCA to GP-LVM

° places a prior on and marginalises the latent space X
and optimises the linear mapping's parameters W

° does the opposite: the prior is placed on the
mapping parameters.

w

p(Y[W,5) =
Jp(Y X, W, B)p(X)dX
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Gaussian process latent variable model
(GP-LVM)

e PPCA and Dual PPCA are equivalent (equivalent eigenvalue
problems for ML solution)

e GP-LVM: Instead of placing a prior p(W') on the parametric
mapping's parameters, we can place a prior directly on the
mapping function = GP prior

e A GP prior f ~ GP(0,k(z,x")) allows for non-linear mappings
if the kernel & is non-linear. For example:

Q
1
kg (Xivxj) =0’ exp 3 § 1 Wq (wi,q - xj,q)z
p—

[Lawrence 2005]



Dimensionality reduction: Linear vs
non-linear

fis linear

on-linear

Image from: "Dimensionality Reduction the Probabilistic Way"”, N. Lawrence, ICML tutorial 2008
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Optimising the GP-LVM

e Objective function for optimisation is p(Y|X)
(found analytically, as F is finite)

e Problem: this finds a single point ( )
estimate for X

e We would prefer to instead find a distribution
over X = GP-LVM

e This allows for:

» training robust to overfitting

» automatic detection for the dimensionality of X

» incorporating known structure on the latent
space




Bayesian GPLVM

o GPLVM objective function:

p(Y|X) = / p(Y|£) p(E|X)df = N(Y]0, Ky + 5~ Iw)

The GPLVM is trained by maximizing p(Y|X) w.r.t the
mapping's parameters and X (jointly) = MAP estimate,

e Bayesian GPLVM: Also integrate out X's:

p(Y) = / p(¥Y]X) p(X)dX

N
p(X) =[] N(xal0,Ig)

n=1
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o GPLVM objective function:

p(Y|X) = / p(Y|£) p(E|X)df = N(Y]0, Ky + 5~ Iw)

The GPLVM is trained by maximizing p(Y|X) w.r.t the
mapping's parameters and X (jointly) = MAP estimate,

e Bayesian GPLVM: Also integrate out X's:

p(Y) = / p(¥Y]X) p(X)dX

N
p(X) =[] N(xal0,Ig)

n=1

e Tractability: The marginal likelihood as well as the posterior
p(X|Y) are intractable = the variational framework of [Titsias
and Lawrence, 2010] resolves this



Automatic dimensionality detection

e Achieved by employing automatic relevance determination
(ARD) priors for the mapping f.

o f~GP(0,ks) with:
kr (xi,%xj) = o2 o1 wa(ig—i.0)”

e Example:
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Modelling dynamics

If Y formis a , then X also has
to be one
Place a on the latent space:

x = xz(t) = GP(0, k)

Dynamics are encoded in the covariance matrix
K, = k;(t,t), e.g. forcing K, to be block-diagonal
allows to jointly model individual sequences

Video examples...

[Damianou et al., 2011]



Modelling sequences

e Dynamics are encoded in the covariance matrix K, = k;(t,t),
e.g. forcing K, to be block-diagonal allows to jointly model
individual sequences




Multi-modal modelling

Several observation modalities for the same underlying
phenomenon

. factorise the latent space into parts that are either
private or shared for all modalities

. use a separate set of ARD parameters for
each modality

The ARD weights are optimised to learn the responsibility of
each latent dimension for generating each of the observation
spaces




Manifold Relevance Determination

® The high-level description of the model:

e Bayesian optimisation ensures that irrelevant dimensions will
be assigned a zero weight

[Damianou et al., 2012]



Example: Yale faces

e Dataset Y: 3 persons under all illumination conditions
e Dataset Z: As above for 3 different persons

e Align datapoints y, and z, only based on the lighting
direction



YaleDataset.avi
Media File (video/avi)


Results

e Latent space X initialised with 14 dimensions
o Weights define a segmentation of X

wZ

[ 12 3[4 5678 91011121314,

wY

e Video...



Summary

GP-LVVM: probabilistic non-linear dimensionality reduction

Bayesian GP-LVVM: placing a prior over and marginalising the
latent space

Dynamical framework: constraining the latent space to be a
timeseries

Multi-modal framework: automatically segment the latent
space to shared and private subspaces
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