Publications
 
		See also my 
Google Scholar page. 
		
		
		
			- 
				
				E. Palumbo, G. Penha, A. Damianou, H. Bouchard, A. Wang, F. Tomasi, J. Redondo Garcia (2024)
				
 "Systems and Methods for Generating a Custom Playlist based on an Input to a Machine-Learning Model"
 US Patent.
	
			- 
				
				E. Palumbo, R. Ferreira, A. Damianou, A. Wang, G. Fazelnia, P. Ravichandran, C. Hauff, H. Bouchard, H. Pampin (2024)
				
 "Systems and methods for suggesting queries using a graph"
 US Patent.
			
			- 
				
				 E. Palumbo, G. Penha, A. Damianou, J. García, T. Heath, A. Wang, H. Bouchard, M. Lalmas (2024)
				
 "Text2Tracks: Generative Track Retrieval for Prompt-based Music Recommendation."
 ROEGEN @ RecSys 2024.
				 [PDF]
				- 
				
				 A. Bacciu, E. Palumbo, A. Damianou, N. Tonellotto, F. Silvestri (2024)
				
 "Generating Query Recommendations via LLMs."
 IR-RAG @ SIGIR24.
				 [PDF]
				- 
				
				 M. De Nadai, F. Fabbri, P. Gigioli, A. Wang, A. Li, F. Silvestri, L. Kim, S. Lin, V. Radosavljevic, S. Ghael, D. Nyhan, H. Bouchard, M. Lalmas-Roelleke, A. Damianou (2024) 
				
 "Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks."
 The Web Conferece. [Oral presentation]
				 [PDF][Blog]
				- 
				
				 A. Damianou, F. Fabbri, P. Gigioli, M. De Nadai, A. Wang, E. Palumbo, M. Lalmas (2024)
				
 "Towards Graph Foundation Models for Personalization."
 Graph Foundation Models Workshop @ The Web Conference.
				 [PDF][Blog]
				- 
				
				 E. Palumbo, A. Damianou, A. Wang, A. Liu, G. Fazelnia, F. Fabbri, R. Ferreira, F. Silvestri, H. Bouchard, C. Hauff, M. Lalmas, B. Carterette, P. Chandar, D. Nyhan (2023)
				
 "Graph Learning for Exploratory Query Suggestions in an Instant Search System."
 CIKM industry track.
				- 
				
				 S. Kleinegesse, Z. Dai, A. Damianou, K. Ciosek, F. Tomasi. (2021)
				
 "Efficient Automated Online Experimentation with Multi-Fidelity."
 NeurIPS Meta-Learning workshop.
				 [PDF]
				- 
				
				A. Damianou, N. Lawrence, C. H. Ek. (2021)
				
 "Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis."
 Journal of Machine Learning Research (JMLR).
				 [PDF]
				
		     [bib]
			- 
				
				F. Tonolini, P. G. Moreno, A. Damianou, R. Murray-Smith (2021)
				
 "Tomographic Auto-Encoder: Unsupervised Bayesian Recovery of Corrupted Data."
 ICLR
				[PDF]
			- 
				
				W. Maddox, S. Tang, P. Moreno, A. Wilson, A. Damianou (2021)
				
 "Fast Adaptation with Linearized Neural Networks."
 AISTATS
				[PDF]
			- 
				
				S. Tang, W. Maddox, C. Dickens, T. Diethe, A. Damianou (2020)
				
 "Similarity of Neural Networks with Gradients."
 arXiv
				[PDF]
			- 
				
				X. Hu, P. Moreno, X. Shen, Y. Xiao, N. Lawrence, G. Obozinski, A. Damianou (2020)
				
 "Empirical Bayes Transductive Meta-Learning with Synthetic Gradients."
 ICLR
				[PDF]
		        [bib]
			- 
				
				B. Balaji, J. Bell-Masterson, E. Bilgin, A. Damianou, P. Moreno, A. Jain, R. Luo, A. Maggiar, B. Narayanaswamy, C. Ye (2019)
				
 "ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems."
 arXiv
				[PDF]
		        [bib]
			- 
				
				W. Maddox, S. Tang, P. Moreno, A. Wilson, A. Damianou (2019)
				
 "On Transfer Learning via Linearized Neural Networks."
 NeurIPS meta-learning workshop.
				[PDF]
		        [bib]
			- 
				
				X. Hu, P. Moreno, X. Shen, Y. Xiao, N. Lawrence, G. Obozinski, A. Damianou (2019)
				
 "Empirical Bayes Meta-Learning with Synthetic Gradients."
 NeurIPS meta-learning workshop.
				[PDF]
		        [bib]
			- 
				
				S. Ahn, X. Hu, A. Damianou, N. Lawrence, Z. Dai (2019)
				
 "Variational information distillation for knowledge transfer."
 CVPR
				[PDF]
		        [bib]
			- 
				
				S. Flennerhag, P. Moreno, N. Lawrence, A. Damianou (2018)
				
 "Transferring Knowledge across Learning Processes."
 International Conference on Learning Representations (ICLR) [Oral presentation].
				[PDF]
		        [bib]
			- 
				
				X. Hu, P. Moreno, N. Lawrence, A. Damianou (2018)
				
 "β-BNN: A Rate-Distortion Perspective on Bayesian Neural Networks."
 NeurIPS workshop on Bayesian deep learning. 
				[PDF]
		        [bib]
			- 
				
				S. Flennerhag, P. Moreno, N. Lawrence, A. Damianou (2018)
				
 "Transferring Knowledge across Learning Processes."
 NeurIPS workshop on meta-learning.
			- 
				
				S. Ahn, X. Hu, A. Damianou, N. Lawrence, Z. Dai (2018)
				
 "Variational Mutual Information Distillation for Transfer Learning."
 NeurIPS workshop on continual learning. 
				[PDF]
		        [bib]
			- 
				
				K. Cutajar, M. Pullin, A. Damianou, N. Lawrence, K. Gonzalez (2018)
				
 "Deep Gaussian Processes for Multi-fidelity Modeling."
 NeurIPS workshop on Bayesian deep learning. 
				[PDF]
		        [bib]
			- 
				
				V. Kumar, V. Singh, P. K. Srijith, A. Damianou (2018)
				
 "Deep Gaussian Processes with Convolutional Kernels."
 UAI workshop on uncertainty in deep learning. arXiv version: 
				[PDF]
		        [bib]
			- 
				
				A. J. Prescott, D. Camilleri, U. Martinez-Hernandez, A. Damianou, N. Lawrence (2019)
				
 "Memory and mental time travel in humans and social robots."
 Philosophical Transactions B: Biological Sciences
			- 
				
				J. Yang, T. Drake, A. Damianou, Y. Maarek (2018)
				
 "Leveraging Crowdsourcing Data For Deep Active Learning - An Application: Learning Intents in Alexa."
 The Web Conference (WWW 2018)
				[PDF]
		        [bib]
			- 
				
				
				C. L. Mattos, Z. Dai, A. Damianou, G. Barreto, N. Lawrence (2017)
				
 "Deep recurrent Gaussian processes for outlier-robust system identification."
 Journal of Process Control
				[PDF]
		        [bib]
			- 
				
				M. Jin, A. Damianou, P. Abbeel, C. Spanos (2017)
				
 "Inverse Reinforcement Learning via Deep Gaussian Process."
 Uncertainty in Artificial Intelligence (UAI), 2017. Preprint: arXiv:1512.08065
				[PDF]
		        [bib]
			- 
				
				B. Van Niekerk, A. Damianou, B. Rosman (2017)
				
 "Online Constrained Model-based Reinforcement Learning."
 Uncertainty in Artificial Intelligence (UAI) [Oral Presentation], 2017.
				[PDF]
		        [bib]
			- 
				
				J. Gonzalez, Z. Dai, A. Damianou, N. Lawrence (2017)
				
 "Preferential Bayesian Optimization."
 International Conference on Machine Learning (ICML)
				[PDF]
		        [bib]
			- 
				
				P. Perdikaris, M. Raissi, A. Damianou, N. Lawrence, G. E. Karniadakis (2017)
				
 "Nonlinear information fusion algorithms for robust multi-fidelity modeling."
 Proceedings of the Royal Society A.
				[PDF]
		        
		        [bib]
			- 
				
				C. Moulin-Frier*, T. Fischer*, M. Petit, G. Pointeau, J. Puigbo, U. Pattacini, S. Low, D. Camilleri, P. Nguyen, M. Hoffmann, H. Chang, M. Zambelli, A. Mealier, A. Damianou, G. Metta, T. Prescott, Y. Demiris, P. Dominey, P. Verschure (2017)
				
 "DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self."
 IEEE Transactions on Cognitive and Developmental Systems. Preprint: arXiv:1706.03661
				[PDF]
			- 
				
				J. Gonzalez, Z. Dai, A. Damianou, N. Lawrence (2016)
				
 "Bayesian Optimisation with Pairwise Preferential Returns."
 NIPS workshop on Bayesian Optimization.
				[PDF]
		        [bib]
			- 
				
				A. Damianou, N. Lawrence, C. Ek. (2017)
				
 "Manifold Alignment Determination: finding correspondences across different data views."
 arXiv
				[PDF]
		         [bib]
			- 
				
				C. wa Maina, M. Smith, E. Mwebaze, A. Damianou, M. Mubangizi, J. Quinn, N. Lawrence (2016)
				
 "Data Science Africa - An Initiative to Bridge the Data Science Skills Gap in Africa."
 SciDataCon
			- 
				
				D. Camilleri, A. Damianou, H. Jackson, N. Lawrence, T. Prescott. (2016)
				
 "iCub Visual Memory Inspector: Visualising the iCub's Thoughts."
 5th International Conference on Biomimetic and Biohybrid Systems (Living Machines).
			- 
				
				D. Camilleri, L. Boorman, U. Martinez, A. Damianou, T. Prescott. (2016)
				
 "A Bioinspired Approach to Vision."
 The 17th Towards Autonomous Robotic Systems conference (TAROS).
			- 
				
				U. Martinez-Hernandez, A. Damianou, D. Camilleri, L. W. Boorman, N. Lawrence, T. J. Prescott. (2016)
				
 "Integrated probabilistic framework for robot perception, learning and memory."
 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).
				
		        [bib]
			- 
				
				C. L. Mattos, A. Damianou, G. Barreto, N. Lawrence. (2016)
				
 "Latent Autoregressive Gaussian Process Models for Robust System Identification."
 11th IFAC Symposium on Dynamics and Control of Process System [Oral presentation] (DYCOPS).
 [PDF]
		        [bib]
		       - 
				
				Z. Dai, A. Damianou, J. Gonzalez, N. Lawrence. (2016)
				
 "Variational Auto-encoded Deep Gaussian Processes."
 International Conference on Learning Representations (ICLR).
				[PDF]
		                [bib]
			- 
				
				C. Mattos, Z. Dai, A. Damianou, N. Lawrence. (2016)
				
 "Recurrent Gaussian Processes."
 International Conference on Learning Representations (ICLR).
				[PDF]
		                [bib]
           - 
	           
	           A. Damianou*, M. Titsias* and N. Lawrence. (2016)
	            
 "Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes."
 Journal of Machine Learning Research (JMLR).
            	[PDF] [bib]
 (Previous version entitled: "Variational Inference for Uncertainty on the Inputs of Gaussian Process Models")
		       - 
				
				Y. Bekiroglu, A. Damianou, R. Detry, J. A. Stork, D. Kragic, C. H. Ek. (2016)
				
 "Probabilistic Consolidation of Grasp Experience."
 IEEE Conference on Robotics and Automation (ICRA).
				[PDF]
				[bib]
			- 
				
				A. Damianou, N. Lawrence, C. Ek. (2015)
				
 "Manifold Alignment Determination."
 NIPS workshop on Multi-Modal Machine Learning
				[PDF]
		         [bib]
 		        - 
				
				U. Martinez-Hernandez, L. Boorman, A. Damianou, and T. Prescott. (2015)
				
 "Cognitive architecture for robot perception and learning based on human-robot interaction"
 IEEE/RSJ IROS 2015 Workshops
				[PDF]
				[bib]
			-     
				A. Damianou and N. Lawrence. (2015)
				
 "Semi-described and semi-supervised learning with Gaussian processes."
 Uncertainty in Artificial Intelligence (UAI), 2015.
				[PDF]
                                [Suppl. PDF]
                                [bib]
			-     
				A. Damianou, C. H. Ek, L. Boorman, N. Lawrence, T. Prescott. (2015)
				
 "A top-down approach for a synthetic autobiographical memory system."
 4th International Conference on Biomimetic and Biohybrid Systems (Living Machines)
 (Oral presentation).
			        [PDF preprint]
                    [bib]
			-     
				L. Boorman, A. Damianou, U. Martinez-Hernandez, T. Prescott. (2015)
				
 "Extending a hippocampal model for navigation around a maze generated from real-world data."
 4th International Conference on Biomimetic and Biohybrid Systems (Living Machines).
				[PDF]
                 [bib]
                        - 
                            	
                                A. Damianou and N. Lawrence. (2014)
                                
 "Uncertainty Propagation in Gaussian Process Pipelines."
 NIPS workshop on modern non-parametrics.
                                [PDF]
                                
				[bib (conference version)]
			- 
                            	
                                Z. Dai, A. Damianou, J. Hensman and N. Lawrence. (2014)
                                
 "Gaussian Process Models with Parallelization and GPU acceleration."
 NIPS workshop on Software Engineering for Machine Learning.
                                [arXiv]
                                [bib]
                       
                        - 
                            	
                                D. Vasisht, A. Damianou, M. Varma and A. Kapoor. (2014)
                                
 "Active Learning for Sparse Bayesian Multilabel Classification."
 ACM SIGKDD conference on knowledge discovery and data mining, KDD.
                                [PDF]
				                [bib]
                       
                        - 
                            	
                                A. Damianou and N. D. Lawrence. (2013)
                                
 "Deep Gaussian Processes."
 AISTATS, 2013.
				[Abstract]
                                [PDF]
				[Python]
				[MATLAB]
				[Details]
				[bib]
                        - 
                               
                                C. Zhang, C. H. Ek, A. Damianou, H. Kjellstrom. (2013)
                               
 "Factorized Topic Models."
 International Conference on Learning Representations (ICLR).
				[http]
                                [bib]
                        - 
                            	
                                A. Damianou and N. D. Lawrence. (2012)
                                
 "Deep Gaussian Processes (workshop version)."
 NIPS workshop on deep learning.
                        - 
				 
                            	 A. Damianou, C. H. Ek, M. K. Titsias and N. D. Lawrence. (2012)
                                
 "Manifold Relevance Determination."
 International Conference on Machine Learning (ICML).
 [Abstract]
                                [PDF]
                                [Suppl. Videos]
                                [Suppl. PDF]
				[Talk]
                                [Code]
				[Details]
                                [bib]
        		-     
				 
		        	 A. Damianou, M. K. Titsias and N. D. Lawrence. (2011)
        			
 "Variational Gaussian Process Dynamical Systems."
 Advances in Neural Information Processing Systems (NIPS).
 [Abstract]
				[PDF & Appendix] 
				[Suppl. Videos]
                                [Code]
				[Details]
                                [bib]
		
Other Publications
                
                        - 
                            	
                                J. Hensman, A. Damianou and N. Lawrence. (2014)
                                
 "Deep Gaussian Processes for Large Datasets."
 Late Breaking Poster, AISTATS.
                                [PDF
				[Poster]
				[bib]
	        
* Joint first author.
		
		
		Theses 
		
            - 
                A. Damianou. (2015)
               
 "Deep Gaussian Processes and Variational Propagation of Uncertainty."
 PhD Thesis, The University of Sheffield.
                Supervised by Prof. Neil Lawrence.
 [PDF]
                [Details]
                [bib]
 
			- 
			    A. Damianou. (2009)
    			
 "Visual Object Categorization using Topic Models."
 M.Sc. Thesis, School of Informatics, The University of Edinburgh.
				Supervised by Dr. Frank Keller.
 [PDF]
			    [bib]